doi: 10.56761/EFRE2024.N3-P-063801

Люминесценция синтетического алмаза под действием электронного пучка, лазерного и рентгеновского излучений

B.C. Рипенко 1,2,* , $A.\Gamma.$ Бураченко 1,2 , $K.\Pi.$ Артёмов 1 , Д.А. Переседова 1,2 , A.A. Крылов 1,2

¹Институт сильноточной электроники СО РАН, Томск, Россия ²Томский государственный университет, Томск, Россия *dsws@vripenko.ru

Аннотация. В работе приведены результаты исследования спектров фото-, катодо- и рентгенолюминесценции алмазного образца, полученного методом температурного градиента и подвергнутого радиационно-термической обработке. Показано, что катодолюминесценцию можно использовать как экспресс метод определения примесно дефектного состава кристаллов. Фотолюминесценция позволяет точечно возбуждать дефектные центры в кристалле. Рентгенолюминесценция оказалась наименее информативная в плане определения дефектного состава, однако проведенные исследования показали, что алмазные образцы, в которых содержатся NV^0 центры, могут использоваться в качестве визуализаторов синхротронного пучка.

Ключевые слова: алмаз, центры окраски, люминесценция, синхротрон, лазер, электронный пучок.

1. Введение

Алмаз уже долгие годы является предметом интереса многих научных групп. Современные технологии синтеза алмазных кристаллов продвинулись до такого уровня, что стало возможно синтезировать алмазы с заданными свойствами, за счет внедрения различных примесей в процессе синтеза. Дальнейшая радиационно-термическая обработка (РТО) кристаллов позволяет нарабатывать в них определенные примесно-дефектные центры или как их еще называют центры окраски. Наиболее распространенным и изученным центром окраски в алмазе является NV центр [1]. Кристаллы, содержащие такие центры находят применения в различных областях науки и техники [2, 3], в том числе отмечается рост интереса по применению таких кристаллов в квантовых технологиях [4].

В данной работе было проведено исследование свечения синтетического алмаза, подвергнутого РТО, с NV центрами под действием электронного пучка, лазерного, рентгеновского и ультрафиолетового излучений. Такие кристаллы возможно применять также в таких актуальных областях как дозиметрия, визуализация ионизирующего излучения, детектирование [5].

2. Экспериментальная установка и методы измерений

2.1. Материалы и методы

В работе исследовался синтетический монокристаллический алмаз, содержащий примесь атомов замещающего азота. Данный образец был подвергнут радиационно-термической обработке для наработки в нем азот-вакансионных центров, в частности NV^0 центров. Данный образец предоставлен OOO «ВЕЛМАН», г. Новосибирск.

Регистрация спектров люминесценции осуществлялась при помощи спектрометра HR2000 со спектральным разрешением 0.9–1.2 нм и чувствительного в диапазоне от 190 до 1150 нм.

2.2. Экспериментальная часть

Для возбуждения катодолюминесценции использовался генератор HOPA с отпаянной электронной трубкой ИМАЗ-150Э. Данная установка позволяла генерировать пучки

электронов с энергией электронов в пучке до 300 кэВ. Подробное описание установки приведено в [6].

Возбуждение фотолюминесценции осуществлялось при помощи полупроводниковых лазеров с длиной волны генерации 405, 450 и 520 нм, а также ультрафиолетового светодиода (максимальная интенсивность на длине волны 380 нм).

Возбуждение рентгенолюминесценции осуществлялось на синхротроне ИЯФ СО РАН, г. Новосибирск, на экспериментальной станции ВЭПП-3. Геометрические размеры пучка составляли $2x4 \text{ мм}^2$. Энергия синхротронного пучка составляла $\sim 10 \text{ кэB}$.

Принципиальная схема регистрации спектров люминесценции представлена на Рис.1.

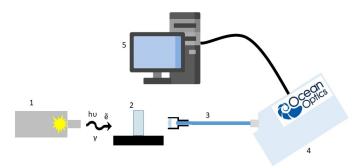
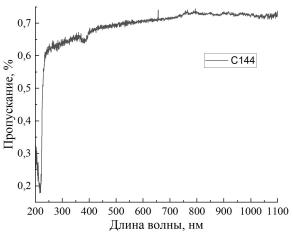



Рис. 1. Принципиальная схема регистрации спектров люминесценции: 1 – источник электронов, фотонов, гамма-квантов, 2 – алмазный образец, 3 – оптоволоконный световод с коллиматором, 4 – спектрометр, 5 – компьютер.

Излучение от источника (1) падало на поверхность алмазного образца (2), возбуждая в нем люминесценцию. Далее свечение образца собиралось при помощи коллиматора и световода (3) и попадало на чувствительный элемент спектрометра (4). После чего полученные данные обрабатывались на компьютере (5).

3. Результаты

Предварительно для исследуемого образца алмаза были получены спектры пропускания (Рис. 2) и ИК поглощения (Рис. 3).

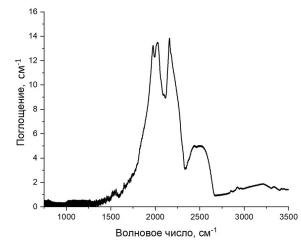


Рис. 2. Спектр пропускания алмазного образца.

Рис.3. Спектр ИК поглощения алмазного образца.

Из полученных спектров видно, что в ультрафиолетовой области наблюдается достаточно широкая полоса поглощения от 250 до 700 нм. Это вероятнее всего связано с

наличием в образце азот-вакансионных центров и центров, связанных с радиационно термической обработкой, как например минимум в спектре пропускания на 389 нм. Спектры ИК поглощения оказались менее информативными. В однофононной области спектра не наблюдались какие-либо особенности.

Далее были получены спектры люминесценции. На Рис. 4 представлены спектры фотолюминесценции алмазного образца при возбуждении полупроводниковыми лазерами и ультрафиолетовым диодом.

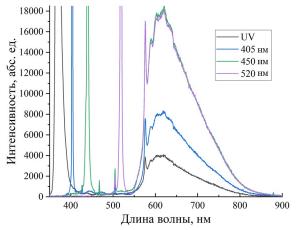


Рис. 4. Спектры фотолюминесценции алмазного образца.

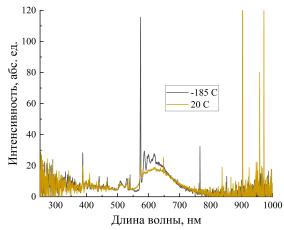


Рис. 5. Спектры катодолюминесценции алмазного образца, полученные при комнатной температуре и при температуре жидкого азота.

Как видно из Рис. 4, во всех спектрах доминирует люминесценция NV^0 центра с бесфононной линией (БФЛ) на 575 нм. При возбуждении люминесценции лазером на 520 нм в спектрах наблюдалась люминесценция NV^0 центра, а также антистоксовое возбуждение центра на 503 нм (3H центра). При возбуждении лазером на 450 нм помимо NV^0 центра в спектрах наблюдались БФЛ на 503 нм и 464 нм (3H и TR12 центры).

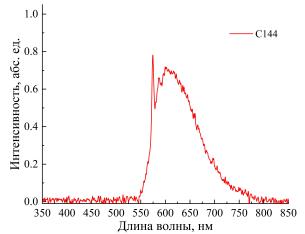


Рис. 6. Спектр рентгенолюминесценции алмазного образца.

При возбуждении лазером на 405 нм, помимо вышеперечисленных, в спектрах наблюдался также центр с БФЛ на 415 нм (N3 центр). Спектры, полученные при возбуждении ультрафиолетовым диодом, оказались менее информативными, кроме люминесценции NV^0 центра никаких других линий и полос идентифицировать не удалось.

На Рис. 5 представлены спектры катодолюминесценции алмазного образца. Как видно из Рис. 5 в спектрах катодолюминесценции наблюдалась также линия на 389 нм, соответствующая радиационному дефекту со структурой N_s - C_i . Кроме того, наблюдалась БФЛ на 503 нм со слабовыраженным фононным крылом и БФЛ на 575 нм с широким фононным крылом NV^0 центра. На Рис. 6 представлен спектр рентгенолюминесценции исследуемого образца. В спектре рентгенолюминесценции, как видно из Рис. 6, наблюдалась люминесценция только NV^0 центра.

4. Заключение

Проведено исследование спектров люминесценции синтетического алмазного кристалла при воздействии на него лазерным излучением, пучком электронов, синхротронным излучением. Показано, что в зависимости от вида воздействия спектры свечения образцов кардинально отличаются. Это обусловлено различными механизмами возбуждения люминесценции в кристалле и требует дальнейшего более детального исследования.

Результаты, полученные в работе, показывают, что алмаз является отличным индикатором и в дальнейшем визуализатором различного рода излучений, что открывает большие перспективы при создании мониторов/визуализаторов ионизирующего излучения, датчиков высокоэнергетичных частиц, детекторов ультрафиолетового, рентгеновского и др. излучений.

Благодарности

Авторы работы благодарят Елисеева А.П., ИГМ СО РАН, Новосибирск, за помощь в получении и интерпретации спектров ИК поглощения.

Авторы благодарят коллектив ИЯФ СО РАН, г. Новосибирск за предоставленную возможность в проведении экспериментов на станциях ВЭПП.

Работа выполнена в рамках Государственного задания ИСЭ СО РАН, проект № FWRM-2021-0014.

5. Список литературы

- [1] Y. Zheng, Ch. Li, J. Liu, J. Wei and H. Ye, Diamond with nitrogen: states, control, and applications, *Functional Diamond*, vol. 1, 63, 2021, doi: 10.1080/26941112.2021.1877021
- [2] Z. Yuan, S. Mukherjee, J. D. Thompson, and N. P. de Leon, An instructional lab apparatus for quantum experiments with single nitrogen-vacancy centers in diamond, *Quantum Physics*, arXiv:2407.15759, 2024, doi: 10.48550/arXiv.2407.15759
- [3] G. Thiering, A. Gali, Photoexcitation and recombination processes of the neutral nitrogen-vacancy center in diamond from first principles, *J. Appl. Phys.*, vol. **136**, 084401, 2024, doi: 10.1063/5.0221228
- [4] C. Chia, B. Machielse, B. Pingault, M. Chalupnik, G. Joe, E. Cornell, S. W. Ding, S. Bogdanovic, K. Kuruma, A. H. Piracha, S. Maity, T. M. Babinec, S. Meesala and M. Loncar, Diamond quantum nanophotonics and optomechanics, *Semiconductors and Semimetals*, vol. **104**, 2021, doi: 10.1016/bs.semsem.2020.08.005
- [5] В.Н. Амосов, С.А. Мещанинов, Г.Е. Немцев, Н.Б. Родионов, С.В. Терентьев, Термолюминесцентный дозиметрический детектор на основе синтетического алмаза, Прикладная физика, № 6, 20 июня 2011.
- [6] А.Г. Бураченко, В.С. Рипенко, Е.И. Липатов, К.П. Артёмов, А.А. Крылов, Катодолюминесценция азотсодержащих алмазных образцов при температурах 80-800, *Известия вузов. Физика*, том **65**, 19, 2022, doi: 10.17223/00213411/65/11/19