СВЕДЕНИЯ О РЕЗУЛЬТАТАХ ПУБЛИЧНОЙ ЗАЩИТЫ ДИССЕРТАЦИИ

Диссертационный совет **24.1.115.02** (Д **003.031.01**), созданный на базе Федерального государственного бюджетного учреждения науки Института сильноточной электроники Сибирского отделения Российской академии наук, извещает о результатах состоявшейся 26 декабря 2023 года публичной защиты диссертации Дорошкевичем Сергеем Юрьевичем на тему «Широкоапертурный импульсно-периодический ускоритель электронов на основе несамостоятельного высоковольтного тлеющего разряда с эффективным выводом пучка в атмосферу», представленной на соискание ученой степени кандидата технических наук по специальности 2.2.1 — вакуумная и плазменная электроника.

Время начала заседания: 15.03

Время окончания заседания: 16.58.

На заседании диссертационного совета присутствовали 14 человек из 17 членов диссертационного совета, из них 5 докторов наук по специальности 2.2.1 – вакуумная и плазменная электроника:

1 Воломин Пимолом Алемовили врем на положно пи

1. Ратахин Николаи Александрович – председатель диссертационного								
совета	д.фм.н.	1.3.5						
2. Озур Григорий Евгеньевич – ученый секретарь диссертационного								
совета	д.т.н.	2.2.1						
3. Иванов Юрий Фёдорович – член совета	д.фм.н.	1.3.5						
4. Климов Александр Сергеевич – член совета	д.т.н.	2.2.1						
5. Коваль Николай Николаевич – член совета	д.т.н.	2.2.1						
6. Козырев Андрей Владимирович – член совета	д.фм.н.	1.3.5						
7. Кошелев Владимир Ильич – член совета	д.фм.н.	1.3.5						
8. Ломаев Михаил Иванович – член совета	д.фм.н.	1.3.5						
9. Окс Ефим Михайлович – член совета	д.т.н.	2.2.1						
10. Пушкарев Александр Иванович	д.ф-м.н.	1.3.5						
11. Ростов Владислав Владимирович – член совета	д.ф-м.н.	1.3.5						
12. Соснин Эдуард Анатольевич – член совета	д.фм.н.	1.3.5						
13. Чернов Иван Петрович – член совета	д.фм.н.	1.3.5						
14. Юшков Георгий Юрьевич – член совета	д.т.н.	2.2.1						

Заседание вел председатель диссертационного совета, доктор физико-математических наук, академик РАН Ратахин Николай Александрович.

По результатам защиты диссертации тайным голосованием (результаты голосования: за присуждение учёной степени — 14, против — нет, недействительных бюллетеней — нет) диссертационный совет принял решение **присудить** Дорошкевичу С.Ю. учёную степень кандидата технических наук.

ЗАКЛЮЧЕНИЕ ДИССЕРТАЦИОННОГО СОВЕТА 24.1.115.02 (Д 003.031.01), СОЗДАННОГО НА БАЗЕ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО УЧРЕЖДЕНИЯ НАУКИ ИНСТИТУТА СИЛЬНОТОЧНОЙ ЭЛЕКТРОНИКИ СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК, ПО ДИССЕРТАЦИИ НА СОИСКАНИЕ УЧЕНОЙ СТЕПЕНИ КАНДИДАТА НАУК

аттестационное дело №						
_		_	_	_		

решение диссертационного совета от 26.12.2023 г. № 3

О присуждении Дорошкевичу Сергею Юрьевичу, гражданину Российской Федерации ученой степени кандидата технических наук.

Диссертация «Широкоапертурный импульсно-периодический ускоритель электронов на основе несамостоятельного высоковольтного тлеющего разряда с эффективным выводом пучка в атмосферу» по специальности 2.2.1 − вакуумная и плазменная электроника принята к защите 20 октября 2023 года (протокол заседания № 2) диссертационным советом 24.1.115.02 (Д 003.031.01), созданным на базе Федерального государственного бюджетного учреждения науки Института сильноточной электроники Сибирского отделения Российской академии наук (ИСЭ СО РАН), Министерство науки и высшего образования Российской Федерации, 634055, Томск, просп. Академический, д. 2/3, приказ о создании совета № 1555/нк от 21 ноября 2022 г.

Соискатель Дорошкевич Сергей Юрьевич 18 января 1996 года рождения в 2023 году закончил очную аспирантуру ИСЭ СО РАН по направлению подготовки 11.06.01—электроника, радиотехника и системы связи, и научной специальности 2.2.1—вакуумная и плазменная электроника. Работает младшим научным сотрудником в ИСЭ СО РАН.

Диссертация выполнена в лаборатории плазменной эмиссионной электроники ИСЭ СО РАН. Научный руководитель – доктор технических наук, старший научный сотрудник ИСЭ СО РАН Воробьёв Максим Сергеевич.

Официальные оппоненты:

Косогоров Сергей Леонидович, доктор технических наук, начальник лаборатории НИЛ КЛ-8 НТЦ «Синтез», Акционерное общество НИИ электрофизической аппаратуры (НИИЭФА) им. Д.В. Ефремова, г. Санкт-Петербург;

Ремнёв Геннадий Ефимович, доктор технических наук, профессор, заведующий научно-производственной лабораторией импульсно-пучковых, электроразрядных и плазменных технологий Инженерной школы новых производственных технологий Федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский Томский политехнический университет»;

дали положительные отзывы на диссертацию.

Федеральное Ведущая организация: государственное бюджетное учреждение науки Институт ядерной физики им. Г.И. Будкера Сибирского отделения Российской академии наук (ИЯФ СО РАН), г. Новосибирск, в своем положительном отзыве, подписанном Астрелиным Виталием Тимофеевичем, кандидатом технических наук, старшим научным сотрудником ИЯФ СО РАН, и утвержденном директором ИЯФ СО РАН Логачёвым Павлом Владимировичем, доктором физико-математических наук, академиком РАН, указала, что диссертационная работа Дорошкевича Сергея Юрьевича «Широкоапертурный импульсно-периодический ускоритель электронов на основе несамостоятельного высоковольтного тлеющего разряда с эффективным выводом пучка в атмосферу» является законченной научно-квалифицированной работой, в которой проведено исследование работы широкоапертурного источника электронного пучка в новом импульсно-периодическом режиме и определены оптимальные условия для повышения выхода пучка в атмосферу и однородности плотности его тока. Исследование проведено на высоком уровне и имеет существенное практическое значение для разработки и применения источников такого типа. Диссертация соответствует требованиям п. 9 «Положения о порядке присуждения ученых степеней», утвержденного

постановлением Правительства Российской Федерации от 24.09.2013 г. № 842, предъявляемым к диссертациям на соискание ученой степени кандидата наук, а ее автор заслуживает присуждения искомой ученой степени кандидата технических наук по специальности 2.2.1 – вакуумная и плазменная электроника.

Содержание диссертации в полной мере отражено в 15 научных работах, из которых 3 опубликовано в рецензируемых научных изданиях, рекомендованных ВАК (1 патент РФ на изобретение и 2 статьи в журналах из перечня ВАК РФ); результаты были апробированы на 8 отечественных и международных конференциях и симпозиумах.

В диссертации отсутствуют недостоверные сведения об опубликованных работах.

Наиболее значимые работы соискателя:

- Эффективный способ генерации и вывода электронного пучка в атмосферу в широкоапертурном ускорителе на основе ионно-электронной эмиссии / С.Ю. Дорошкевич, М.С. Воробьёв, М.С. Торба, А.А. Гришков, Н.Н. Коваль, С.А. Сулакшин, В.В. Шугуров, В.А. Леванисов // Приборы и техника эксперимента. 2023. № 3. С. 53–60.
- 2. Предпосевная обработка семян яровой пшеницы импульсным электронным пучком в атмосфере / С.Ю. Дорошкевич, К.П. Артёмов, Н.Н. Терещенко, Т.И. Зюбанова, М.С. Воробьёв, Е.Е. Акимова, О.М. Минаева, Е.А. Покровская, В.И. Шин, М.С. Торба, В.А. Леванисов // Химия высоких энергий. −2021. −Т. 55. –№ 4. С. 326–332.
- 3. Способ повышения энергетической эффективности источников электронов на основе ионно-электронной эмиссии / С.Ю. Дорошкевич, М.С. Воробьёв, Н.Н. Коваль, М.С. Торба, С.А. Сулакшин, В.А. Леванисов, В.В. Шугуров, В.И. Шин // Патент РФ на изобретение RU 2772817 C1, опубликован 26.05.2022. Бюл. №15.
- 4. Снижение неоднородности плотности тока пучка в атмосфере в ускорителе электронов на основе несамостоятельного BTP / С.Ю. Дорошкевич,

- М.С. Воробьёв, А.А. Гришков, М.С. Торба, Н.Н. Коваль, С.А. Сулакшин, Р.А. Картавцов // Труды VII международного Крейнделевского семинара «Плазменная эмиссионная электроника», Улан-Удэ, 2023, С. 92–96.
- 5. Simulation of a wide-aperture electron accelerator based on ion-electron emission in repetitively pulsed mode / A.A. Grishkov, M.S. Vorobyov, S.Yu. Doroshkevich, V.A. Shklyaev // Proceedings of 8th International Congress on Energy Fluxes and Radiation Effects. Congress Proceedings, Tomsk, 2022. P. 118–127.
- 6. Efficiency of electron beam extraction to the atmosphere in an accelerator based on ion-electron emission / S.Yu. Doroshkevich, M.S. Vorobyov, M.S. Torba, N.N. Koval, S.A. Sulakshin, V.A. Levanisov // Journal of Physics: Conference Series. 15th International Conference on "Gas Discharge Plasmas and Their Applications" (GDP-2021). 2021. 012116.

На автореферат диссертации поступили отзывы:

- 1) отзыв от профессора кафедры электронных приборов ФГБОУ ВО «Рязанский государственный радиотехнический университет имени В.Ф. Уткина» (г. Рязань), д.ф.-м.н. Козлова Бориса Алексеевича, отзыв положительный, имеется замечание: «Защищаемые научные положения (особенно № 1 и № 2) слишком «велики» и носят описательный характер. Кроме этого они содержат в себе комментарии. Они могли бы быть сформулированы более лаконично в виде небольшого числа критериальных соотношений»;
- 2) отзыв от профессора кафедры экспериментальной физики Северо-Кавказского федерального университета (г. Ставрополь), д.т.н. Мартенса Владимира Яковлевича, отзыв положительный, имеются замечания:
 - «Непонятна существенная разница в формах импульсов тока электронного пучка, выведенного в атмосферу, и тока в ускоряющем промежутке, представленных на Рис. 11.»;
 - «В п.8 Заключения отмечается эффективность использования разработанного ускорителя для обработки семян сельскохозяйственных культур, однако в тексте автореферата нет никакой информации об этих экспериментах».

- 3) отзыв от старшего научного сотрудника ФГУП «ВНИИА им. Н.Л. Духова» (г. Москва), к.ф.-м.н. Мамедова Никиты Вадимовича, отзыв положительный, имеются замечания:
 - «В автореферате автор недостаточно подробно комментирует отличие в формах импульса электронного тока в атмосфере и тока в ускоряющем промежутке (рис. 11). Почему формы импульсов отличаются (у тока на атмосфере квази-прямоугольная, у тока в промежутке треугольная)?»;
 - «При расчетах движения частиц в среде OOPIC Pro и Kobra3-INP учитывались ли вторичные процессы в газе при транспортировке пучка?»;
 - «При оценке фокусировки в расчетах движения частиц в среде OOPIC Pro и Kobra3-INP учитывалось ли влияние объемного заряда? Учитывалось ли влияние объемного заряда встречных пучков частиц друг на друга ионного пучка при движении из анодной решетки к высоковольтному катоду и электронного пучка в противоположном направлении?»;
 - «К сожалению, в автореферате не приведены результаты зондовых измерений внутри разрядной ячейки и профиля электронного пучка в ускоряющем промежутке для сравнения с результатами распределения плотности тока пучка в атмосфере».
- 4) отзыв от доцента, заведующей кафедры природных соединений, фармацевтической и медицинской химии химического факультета ФГАОУ ВО «Национальный исследовательский Томский государственный университет» (г. Томск), д.ф.-м.н. Курзиной Ирины Александровны, отзыв положительный, замечаний нет.

Выбор официальных оппонентов и ведущей организации обосновывался тем, что оба оппонента и ведущая организация имеют значительный опыт и высокую компетентность в области физики газового разряда, а также в области физики и техники ускорителей/источников электронов, в том числе, с выводом пучка в атмосферу; могут дать рекомендации по практическому применению результатов и дальнейшему развитию тематики диссертационной работы.

Диссертационный совет считает, что на основании выполненных соискателем исследований:

Разработан способ повышения коэффициента вывода электронного пучка в атмосферу для ускорителей на основе несамостоятельного высоковольтного тлеющего разряда (ВТР), заключающийся в оптимизации коэффициента заполнения импульсов тока вспомогательного плазмообразующего разряда при частоте посылок импульсов до десятков тысяч импульсов в секунду.

Определены параметры орбитронного тлеющего разряда с полым катодом в импульсно-периодическом режиме генерации с частотой 1—70 тысяч импульсов в секунду, коэффициентом заполнения импульса 0,2—0,8 и амплитудой тока разряда 50—300 мА, а также показано влияние генерируемого электронного пучка на параметры плазмы данного разряда.

Продемонстрировано снижение неоднородности распределения плотности тока электронного пучка в атмосфере на 10–30% при переходе от непрерывного режима генерации вспомогательного разряда к импульсно-периодическому при сохранении средней плотности тока электронного пучка в ускорителях на основе несамостоятельного ВТР.

Получена совокупность характеристик, демонстрирующая повышение стабильности работы ускорителя электронов на основе несамостоятельного ВТР при переходе от непрерывного режима горения вспомогательного разряда к импульсно-периодическому, заключающаяся в снижении количества неконтролируемых переходов (срывов) тлеющего разряда в дуговую форму.

Теоретическая значимость исследований обоснована тем, что:

Предложен и обоснован механизм появления фонового тока и выявлено его влияние на процессы в ускоряющем промежутке и вывод электронного пучка в атмосферу.

Изучены основные факторы, влияющие на эффективную генерацию и вывод в атмосферу электронного пучка большого сечения, заключающиеся в обеспечении условий поступления ионов из плазменного эмиттера в ускоряющий промежуток в ускорителе на основе ВТР.

Значение полученных соискателем результатов для практики подтверждается тем, что:

Получены параметры плазмы орбитронного тлеющего разряда в импульсно-периодическом (десятки килогерц) режиме генерации, которые могут быть использованы в качестве исходных данных при проведении численных экспериментов с разрядами данного типа при проектировании аналогичных ускорителей.

Продемонстрировано четырех-пятикратное увеличение импульсной мощности пучка в ускорителе электронов на основе несамостоятельного ВТР, а также снижение неоднородности распределения плотности тока электронного пучка в атмосфере при переходе от непрерывного режима генерации вспомогательного разряда к импульсно-периодическому, что является одним из главных требований на производстве для облучения различных объектов;

Определен диапазон частот следования импульсов тока вспомогательного разряда, в котором достигается повышение импульсной мощности электронного пучка и эффективности его вывода в атмосферу в ускорителе на основе несамостоятельного ВТР, что перспективно для его использования на практике;

Продемонстрировано повышение стабильности работы ускорителя электронов на основе несамостоятельного ВТР, обусловленное снижением вероятности перехода тлеющего орбитронного разряда в дуговую форму в импульсно-периодическом режиме горения вспомогательного разряда по сравнению со непрерывным режимом.

Оценка достоверности результатов выявила:

Результаты получены с использованием современного технического и программного обеспечения для экспериментальной, численной и статистической обработки большого массива полученных в диссертации экспериментальных данных на современном сертифицированном оборудовании.

Показана воспроизводимость результатов во всем диапазоне представленных условий.

Применены стандартные способы измерения характеристик электронного пучка.

Использована современная элементная база в автоматизированных системах диагностики, частотные характеристики которой в полной мере соответствуют исследуемому диапазону частот импульсно-периодического режима.

Идея базируется на повышении коэффициента вывода электронного пучка из вакуума в атмосферу, а также стабильности работы и расширения диапазона регулировки параметров ускорителя электронов на основе несамостоятельного ВТР при переходе к импульсно-периодическому режиму генерации эмиссионной плазмы, когда одно и то же значение среднего тока вспомогательного разряда можно получать при его разных амплитудах, регулируя коэффициент заполнения импульсов.

Личный вклад автора заключался TOM, что ΟН принимал непосредственное участие в определении целей и постановке задач разработке исследований И определяющее участие В И создании экспериментального стенда ускорителя, планировании, подготовке, проведении экспериментов, обработке и обсуждении их результатов с соавторами, подготовке публикаций по теме диссертации, представление результатов диссертационной работы на научных форумах.

В ходе защиты диссертации были высказаны следующие критические замечания: недостаточно полно описано влияние быстрых нейтральных частиц на ток в ускоряющем промежутке, а также не явным образом отмечен механизм влияния импульсно-периодического режима на снижение неоднородности плотности тока электронного пучка.

Соискатель Дорошкевич С.Ю. ответил на все задаваемые ему в ходе заседания вопросы, согласился с рядом обоснованных замечаний и привел собственную аргументацию по влиянию перезарядки ионов и образованию

потока быстрых нейтральных частиц на эмиссию вторичных электронов с поверхности катода, аргументировал идею использования импульсно-периодического режима как для снижения неоднородности плотности тока электронного пучка, так и для повышения эффективности его вывода в атмосферу с улучшением стабильности работы ускорителя в целом.

На заседании 26 декабря 2023 года диссертационный совет принял решение: за разработку и апробацию новых технических решений по расширению параметров выводимых в атмосферу электронных пучков большого сечения, что имеет большое значение для развития вакуумной и плазменной электроники, присудить Дорошкевичу С. Ю. ученую степень кандидата технических наук.

При проведении тайного голосования диссертационный совет в количестве 14 человек, из них 5 докторов наук по специальности 2.2.1 — вакуумная и плазменная электроника, участвовавших в заседании совета, из 17 человек, входящих в состав совета, проголосовали: за — 14, против — нет, недействительных бюллетеней — нет.

Председатель диссертационного совета,

доктор физико-математических наук,

академик РАН

H. Paradey

Ратахин Николай Александрович

Ученый секретарь диссертационного совета,

доктор технических наук

Озур Григорий Евгеньевич

26 декабря 2023 г.