СВЕДЕНИЯ О РЕЗУЛЬТАТАХ ПУБЛИЧНОЙ ЗАЩИТЫ ДИССЕРТАЦИИ

Диссертационный совет Д 003.031.01созданный на базе Федерального государственного бюджетного учреждения науки Института сильноточной электроники Сибирского отделения Российской академии наук, извещает о результатах состоявшейся 21 декабря 2016 года публичной защиты диссертации Золотухиным Денисом Борисовичем на тему: «Параметры и характеристики пучковой плазмы, генерируемой в форвакуумной области давлений электронным источником с плазменным катодом», представленной на соискание ученой степени кандидата физико-математических наук по специальности 01.04.04 — физическая электроника.

Время начала заседания: 15.00 Время окончания заседания: 16.50

На заседании диссертационного совета присутствовали 20 человек из 24 членов диссертационного совета, из них 7 докторов наук по специальности 01.04.04 — физическая электроника:

Заседание вел председатель диссертационного совета доктор

физико-математических наук, академик РАН Ратахин Николай Александрович.

По результатам защиты диссертации тайным голосованием (результаты голосования: за присуждение ученой степени — 20, против — нет, недействительный бюллетеней — нет) диссертационный совет принял решение присудить Золотухину Д.Б. учёную степень кандидата физикоматематических наук.

ЗАКЛЮЧЕНИЕ ДИССЕРТАЦИОННОГО СОВЕТА Д 003.031.01 НА БАЗЕ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО УЧРЕЖДЕНИЯ НАУКИ ИНСТИТУТА СИЛЬНОТОЧНОЙ ЭЛЕКТРОНИКИ СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК, ПОДВЕДОМСТВЕННОГО ФЕДЕРАЛЬНОМУ АГЕНТСТВУ НАУЧНЫХ ОРГАНИЗАЦИЙ, ПО ДИССЕРТАЦИИ НА СОИСКАНИЕ УЧЕНОЙ СТЕПЕНИ КАНДИДАТА НАУК

аттестационное дело №	

решение диссертационного совета от 21.12.2016 № 40

О присуждении **Золотухину Денису Борисовичу**, гражданину Российской Федерации, ученой степени кандидата физико-математических наук. Диссертация «Параметры и характеристики пучковой плазмы, генерируемой в форвакуумной области давлений электронным источником с плазменным катодом» по специальности 01.04.04 — физическая электроника принята к защите 14.10.2016, протокол № 37, диссертационным советом Д 003.031.01 на базе Федерального государственного учреждения науки Института сильноточной электроники Сибирского отделения Российской академии наук (ИСЭ СО РАН), подведомственного Федеральному агентству научных организаций, 634055, г. Томск, проспект Академический, 2/3, приказ № 105/нк от 11 апреля 2012 года.

Соискатель Золотухин Денис Борисович 1990 года рождения. В 2013 году соискатель окончил Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Томский государственный университет систем управления и

радиоэлектроники» (ТУСУР), работает инженером-исследователем лаборатории плазменной электроники кафедры физики ТУСУР.

Диссертация выполнена в Федеральном государственном бюджетном образовательном учреждении высшего образования «Томский государственный университет систем управления и радиоэлектроники» (ТУСУР), 634050, г. Томск, проспект Ленина, 40.

Научный руководитель – доктор технических наук, профессор Окс Ефим Михайлович, Федеральное государственное бюджетное образовательное учреждение высшего образования «Томский государственный университет систем управления и радиоэлектроники», кафедра физики, заведующий кафедрой.

Официальные оппоненты:

- 1. Паперный Виктор Львович доктор физико-математических наук, Федеральное государственное бюджетное образовательное профессор, образования «Иркутский государственный высшего учреждение общей и космической физики, г.Иркутск, кафедра университет», заведующий кафедрой,
- 2. **Кривобоков Валерий Павлович** доктор физико-математических наук, профессор, Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет», г. Томск, кафедра экспериментальной физики, заведующий кафедрой,

дали положительные отзывы о диссертации.

Ведущая организация Федеральное государственное бюджетное учреждение науки Институт электрофизики Уральского отделения Российской академии наук (ИЭФ УрО РАН), г. Екатеринбург, в своем подписанном Гавриловым Николаем положительном заключении, членом-корреспондентом технических Васильевичем, доктором наук, Российской академии наук, заведующим лабораторией пучков частиц, и ФЕИ директором УрО PAH утвержденном кандидатом физикоматематических наук Чайковским С.А., указала, что диссертация Д.Б. Золотухина безусловно заслуживает положительной оценки и полученные им результаты имеют существенное значение для развития физической электроники, в частности физики и техники генерации плазмы и электронных пучков, технологий плазмохимического синтеза и осаждения покрытий, методик стерилизации изделий и инструментов.

Соискатель имеет 34 опубликованные по теме диссертации работы, среди которых 9 статей в рецензируемых журналах из перечня ВАК (статьи в научных журналах из перечня рецензируемых научных изданий, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученой степени кандидата наук, на соискание ученой степени доктора наук), 19 полных текстов докладов на международных и всероссийских конференциях, 4 патента РФ на полезные модели и 2 свидетельства о регистрации программ для ЭВМ, личный вклад автора 85%, общий объем публикаций 14,65 печатных листов.

Наиболее значимые работы соискателя:

- 1. Золотухин, Д. Б. Генерация пучковой плазмы форвакуумным источником электронов в объеме, ограниченном диэлектрическими стенками / Д. Б. Золотухин, В. А. Бурдовицин, Е. М. Окс // ЖТФ. 2015. Т.85, N 5 С. 142-144.
- 2. Zolotukhin, D. B. Generation of uniform electron beam plasma in a dielectric flask at fore-vacuum pressures / D. B. Zolotukhin, V. A. Burdovitsin, E. M. Oks // Plasma Sources Sci. Technol. − 2015. − Vol.25, № 2. − P. 015001.
- 3. Zolotukhin, D. B. Modified quadrupole mass analyzer RGA-100 for beam plasma research in forevacuum pressure range / D. B. Zolotukhin, A. V. Tyunkov, Yu. G. Yushkov, E. M. Oks // Rev. Sci. Instrum. − 2015. − Vol.86, №12. − P. 123301.
- 4. Zolotukhin, D. B. Deposition of dielectric films on silicon surface by forevacuum plasma electron source / D. B. Zolotukhin, E. M. Oks, A. V. Tyunkov, Yu. G. Yushkov // Rev. Sci. Instrum. 2016. Vol.87, №6. P. 063302.

- 5. Tyunkov, A. V. Generation of metal ions in the beam plasma produced by a forevacuum-pressure electron beam source / A. V. Tyunkov, Yu. G. Yushkov, D. B. Zolotukhin, K. P. Savkin, A. S. Klimov // Phys. Plasmas. 2014. Vol.21, № 12. P. 123115.
- 6. Yushkov, Yu. G. Inverse Time-of-Flight Spectrometer for Beam Plasma Research / Yu. G. Yushkov, E. M. Oks, D. B. Zolotukhin, A. V. Tyunkov, K. P. Savkin // Rev. Sci. Instrum. 2014. Vol.85, №5. P. 083306.
- 7. Zolotukhin, D. B. Diagnostics of beam plasma produced in dielectric cavity at fore-vacuum pressures // Journal of Physics: Conference Series. 2016. Vol.666, №1. P. 1-5.
- 8. Zolotukhin, D. B. Sterilization of dielectric containers using a forevacuum pressure plasma-cathode electron source / D. Zolotukhin, V. Burdovitsin, E. Oks, A. Tyunkov, Yu. Yushkov // Journal of Physics: Conference Series. 2015. Vol.652. P. 012044.

На диссертацию и автореферат поступили следующие отзывы:

- 1. Из ФГБУН Институт общей физики им. А.М. Прохорова Российской академии наук (ИОФ РАН), отзыв подписан доктором физикоматематических наук, профессором, заведующим теоретическим отделом Гусейн-заде Намиком Гусейнага оглы. Отзыв положительный, имеется замечание:
- «В автореферате не приведена схема модернизированного квадрупольного масс-спектрометра RGA-100, что не дает полноценно оценить выполненные диссертантом работы по его модернизации».
- 2. Из Национального Технического университета Украины «Киевский Политехнический Институт», отзыв подписан кандидатом технических наук, профессором кафедры электронных приборов и устройств Кузьмичёвым Анатолием Ивановичем. Отзыв положительный, имеются следующие замечания:

«Автор установил возможность электронно-лучевого испарения в кислородной газо-плазменной атмосфере форвакуумного давления с

помощью электронного луча, создаваемого источником с плазменным катодом, и провел измерения некоторых параметров плазмы и осаждаемых пленок. Автор пишет, что эти пленки — диэлектрические, однако, не указан состав этих пленок. Приведенные фотографии на рис. 9 индицируют лишь глобулярную структуру плёнок, которая характерна для конденсации в газе, но это отнюдь не свидетельствует о стехиометрии оксида. Возможно, происходило простое оксидирование поверхности конденсата, тем более что для получения стехиометрии, необходимо согласование концентрации реагирующих веществ».

«Второй момент — средства откачки. Если это механические насосы с масляным уплотнением, то сразу надо отметить влияние «грязного вакуума». Тревожным сигналом является наличие пиков ионов H_2O^+ и NO^+ на масс-спектрах».

«Автор установил возможность стерилизации полых объектов с указанием только их внутреннего объема, но, наверное, надо также указывать максимальную длину (высоту) таких объектов с учётом максимальной глубины проникновения электронного пучка и пучковой плазмы в полость, а также указывать допустимый диапазон диаметров полости, например, относительно диаметра электронного пучка и плазмы».

- **3.** Из ФГАОУ ВО «Северо-Кавказский федеральный университет», отзыв подписан Мартенсом Владимиром Яковлевичем, доктором технических наук, доцентом, профессором кафедры физики, электротехники и электроники. Отзыв положительный, замечаний нет.
- **4.** Из ФГБУН Институт физического материаловедения Сибирского отделения Российской академии наук (ИФМ СО РАН), отзыв подписан Семёновым Александром Петровичем, доктором технических наук, профессором, директором ИФМ СО РАН. Отзыв положительный, замечаний нет.

5. Из Физико-технического института НАН Беларуси, отзыв подписан Залесским Виталием Геннадьевичем, доктором физико-математических наук, директором. Отзыв положительный, имеются следующие замечания:

«Не приводится данных об измерении градиента давлений в диэлектрической полости, тогда как это и может быть причиной продольной неоднородности плазмы».

«На стр. 8 и 9 описывается методика экспериментальных измерений, однако, не указано, каким методом достигнута столь высокая точность измерения электронной температуры (менее 1 эВ)».

«На стр. 12 представлена модель, в которой исключается диффузия (в области форвакуумных давлений). Не представлены оценки длин пробега, но учитываются столкновения и ионизация вторичными электронами в достаточно тонком слое вблизи диэлектрической поверхности. Это создает противоречивое мнение о разработанной модели».

6. Из ФГБУН Институт общей физики им. А.М. Прохорова Российской академии наук (ИОФ РАН), отзыв подписан доктором физикоматематических наук, профессором, ведущим научным сотрудником Центра естественно-научных исследований Лигачёвым Александром Егоровичем. Отзыв положительный, имеются следующие замечания:

«В пункте 3 научной новизны (с.4 автореферата) автор пишет о том, что им изучены «особенности генерации газо-металлической плазмы», но какие именно особенности он имеет в виду, не ясно».

«Желательно было бы привести другие свойства пленочных покрытий, полученных автором (соискатель отмечает только такое не совсем конкретное свойство, как однородность полученных покрытий, но не говорит об их структуре и адгезии к подложке)».

Выбор официальных оппонентов и ведущей организации обосновывается компетентностью оппонентов и ведущих сотрудников организации в соответствующей сфере исследований, широко известных и имеющих публикации в данной отрасли науки и способных определить

научную и практическую ценность диссертации, а также дать рекомендации по использованию её результатов.

Диссертационный совет отмечает, что на основании выполненных соискателем исследований:

разработана научная концепция, позволяющая качественно выявить и количественно охарактеризовать особенности и закономерности параметров и характеристик пучковой плазмы, генерируемой в форвакуумной области давлений электронным источником с плазменным катодом;

предложены оригинальные способы генерации пучковой плазмы при инжекции электронного пучка в диэлектрическую полость, а также при электронно-лучевом испарении металлической мишени с одновременной ионизацией газа и испаренного материала, в форвакууме;

доказана перспективность использования пучковой плазмы, генерируемой форвакуумным источником электронов с плазменным катодом, для стерилизации внутренних поверхностей диэлектрических сосудов и осаждения покрытий;

введены в научный оборот новые данные о поведении пучковой плазмы форвакуумного уровня давлений в диэлектрической полости.

Теоретическая значимость исследования обоснована тем, что:

доказана применимость подходов, основанных на численных балансовых уравнениях, для выявления физических причин и количественной оценки повышенных концентрации и температуры электронов пучковой плазмы, генерируемой в диэлектрической полости;

применительно к проблематике диссертации результативно использован комплекс численных методов решения балансовых уравнений для расчета параметров пучковой плазмы, создаваемой внутри диэлектрической и металлической полостей;

изложены основные причины, влияющие на параметры и характеристики пучковой плазмы, в том числе определяющие повышенную концентрацию и

температуру электронов, а также характер продольного распределения такой плазмы в диэлектрической полости;

раскрыт механизм ввода в плазму дополнительной энергии потоком вторичных электронов, эмитированных с поверхности полости и ускоренных в пристеночных слоях, приводящий к повышению концентрации и температуры электронов плазмы в полости;

изучены основные факторы, влияющие на эффективность генерации пучковой газовой и газо-металлической плазмы форвакуумным источником электронов с плазменным катодом;

проведена модернизация численной балансовой модели плазмы, включающей уравнения баланса энергии, токов и числа частиц, с целью определения параметров пучковой плазмы, создаваемой внутри диэлектрической или металлической полости.

Значение полученных соискателем результатов исследования для практики подтверждается тем, что:

разработаны физические основы технологии генерации пучковой плазмы в диэлектрическом форвакуумном диапазоне давлений, И сосуде запатентовано устройство, реализующее ЭТОТ принцип; показана возможность генерации ионов газов и металлов при электронно-лучевом испарении металлической мишени в форвакууме, и запатентован источник газо-металлических ионов; выполнена и запатентована модернизация известного времяпролетного масс-спектрометра, позволяющая повысить амплитуду сигнала и разрешение прибора и использовать диагностики плазмы, создаваемой при повышенных давлениях;

определены перспективы практического применения полученных результатов для пучково-плазменной стерилизации сосудов и осаждения покрытий из газо-металлической пучковой плазмы;

создана система практических рекомендаций по повышению однородности продольного профиля концентрации пучковой плазмы в диэлектрической полости;

представлены предложения по дальнейшему совершенствованию режимов облучения диэлектрических сосудов применительно к задачам пучковоплазменной стерилизации их поверхности.

Оценка достоверности результатов исследования выявила:

для экспериментальных работ показана воспроизводимость результатов измерений в различных условиях, их согласие с литературными данными; экспериментальные результаты получены на сертифицированном диагностическом оборудовании; достоверность экспериментальных результатов обеспечивалась систематическим характером исследований, использованием различных дублирующих экспериментальных методик, сопоставлением полученных экспериментальных данных с теоретическими оценками и результатами численного моделирования;

теория расчётов параметров пучковой плазмы в различных условиях генерации, в зависимости от тока, энергии пучка, давления газа, а также геометрии и материала полости, подтверждается результатами зондовых и спектроскопических измерений;

идея базируется на анализе и обобщении практики применения численной балансовой модели на основе уравнений баланса энергии, частиц, непрерывности тока и квазинейтральности плазмы при расчёте параметров плазмы и их зависимостей от внешних параметров эксперимента;

использовано сравнение полученных автором параметров пучковой плазмы, и данных, полученных ранее при похожих экспериментах другими авторами; установлено качественное соответствие результатов, полученных автором, с результатами, представленными в независимых литературных источниках; использованы современные методики сбора и обработки исходной информации для определения параметров плазмы и электронного пучка, для контроля качества стерилизации сосудов, а также для исследования состава осажденных из плазмы покрытий.

Личный вклад соискателя состоит в создании экспериментальной установки и оснастки, в выборе методик эксперимента, проведении

экспериментальных исследований и разработке численных моделей, а также в анализе, апробации и представлении результатов. Обсуждение задач исследований, методов их решения и результатов анализа экспериментальных данных проводилось совместно с соавторами, фамилии которых указаны в работах, опубликованных по теме диссертации. Автором самостоятельно выдвинуты защищаемые научные положения и сделаны выводы. Соавторы, принимавшие участие в отдельных направлениях исследований, указаны в списке основных публикаций по теме диссертации. Все результаты, составляющие научную новизну диссертации и выносимые на защиту, получены автором лично.

На заседании 21.12.2016 года диссертационный совет принял решение присудить Золотухину Д. Б. ученую степень кандидата физикоматематических наук.

При проведении тайного голосования диссертационный совет в количестве 20 человек, из них 7 докторов наук по специальности 01.04.04 — физическая электроника, участвовавших в заседании, из 24 человек, входящих в состав совета, проголосовали: за — 20, против — нет, недействительных бюллетеней — нет.

Председатель

диссертационного совета,

доктор физико-математических наук

академик РАН

Ратахин Н.А.

Ученый секретарь

диссертационного совета,

доктор физико-математических наук

Рыжов В.В.

«21» декабря 2016 г.