doi: 10.56761/EFRE2024.C1-O-022202

Моделирование МГД-процессов в аргоновой дуге высокого давления с варьированием распределения плотности тока в прианодной области

С.П. Ващенко¹, Е.В. Картаев^{1,*}, С.М. Аульченко^{1,2}, В.В. Беляев¹, О.Б. Ковалев¹

¹Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, Новосибирск, Россия ²Новосибирский государственный архитектурно-строительный университет (Сибстрин), Новосибирск,

Россия

*kartayev@mail.ru

Аннотация. В аргоновых дуговых разрядах атмосферного давления распределенный (диффузный) характер привязки дуги к медному плоскому аноду определяется тепловым режимом работы анода и сохраняется для токов до 250 А, с контракцией дуги в пятно и быстрым разрушением анода при превышении этого значения. Одним из путей сохранения диффузной привязки при больших токах дуги может являться снижение тепловой нагрузки на анод за счет профилирования его поверхности. В работе представлены результаты численного моделирования магнитогидродинамических (МГД) процессов в канале сильноточного плазмотрона с вынесенной дугой в условиях диффузной привязки столба дуги к аноду в приближении локального термодинамического равновесия (ЛТР). Расчет теплового баланса на аноде основан на численном расчете плотности электрического тока и конвективного подвода тепла к поверхности анода в рамках ЛТР в сочетании с аналитическим учетом тепла, переносимого током электронов из прианодной области в анод, и тепла, выделяемого при их «конденсации» в кристаллической решетке анода.

Ключевые слова: аргоновая дуга атмосферного давления, диффузная привязка дуги к аноду, критический тепловой поток, анод с профилированной поверхностью, МГД моделирование.

1. Введение

Процессы переноса тока и энергообмена в прианодных областях генераторов плазмы различных технологических установок, в частности установок с сильноточными плазмотронами с вынесенной дугой, являются определяющими в увеличении ресурса их работы [1]. Тепловая нагрузка на анод в месте контакта с дугой зависит от рода газа, его параметров и характера течения вблизи поверхности, формы и геометрии анода, но главным образом от величины плотности тока дуги в прианодной области. Процессы токопереноса плазмой в этой области весьма сложны и носят неравновесный характер [2, 3]. В среде инертных газов при высоких давлениях существуют две основные формы контакта дуги с поверхностью анода: диффузная (распределенная), характеризуемая незначительной эрозией анода (< 10^{-13} кг/Кл) с плотностью тока $j \le 10^7$ А/м², и контрагированная. Последняя наблюдается при больших значениях плотности тока $i \approx 10^8 - 10^9$ A/m² в режиме так называемого анодного пятна с тепловыми потоками, приводящими к интенсивному выносу паров материала анода (10⁻⁸ кг/Кл и более) и его последующему разрушению [4]. В [5] также обнаружено явление множественной (слабой) анодной контракции в режиме средних токов до 250 А в виде нескольких светящихся образований на аноде без существенной эрозии. Сохранение диффузной привязки дуги при больших токах возможно путем рассредоточения электрического тока по поверхности анода и снижения тепловой нагрузки за счет увеличения площади его поверхности (профилирования) в месте привязки дуги. Первая попытка провести моделирование для случая свободно горящей дуги предпринята в [6]. В данной работе проведено моделирование течения аргоновой плазмы в канале плазмотрона с вынесенной дугой и особенностей формирования и усиления реверсивного течения в сторону анода при различных профилях его поверхности. Ввиду теплового характера перехода от диффузной привязки к контрагированной одним из критериев сохранения первой является расчетная величина плотности теплового потока в анод, меньшая критической плотности теплового потока для заданного профиля анода.

2. Математическое моделирование

Общий вид сечения симметрии канала сильноточного плазмотрона с вынесенной аргоновой дугой, горящей между водоохлаждаемыми стержневым вольфрамовым катодом С и медным торцевым анодом А и ограничивающим ее смещение с оси медным соплом N показан на Рис. 1а. Расчетная область с учетом цилиндрической симметрии представлена на Рис. 16. Характерные размеры: радиус катода – 6 мм, расстояние между анодом и катодом – примерно 72.5 мм, радиус плоского анода 8 мм. Аргон подавался в зазор между анодом и соплом. Профилирование анода проводилось путем построения на плоском аноде осесимметричного полусферического углубления переменного радиуса с центром в точке L. Расчеты проводились при приближениях модели в рамках ЛТР, перечисленных в [7, 8]. В систему уравнений в цилиндрической системе координат входят [7, 8]: уравнение неразрывности; уравнение Навье-Стокса с учетом объемной силы Лоренца с эффектом магнитного «насоса»; уравнение сохранения энергии, включающее теплоперенос за счет конвекции и теплопроводности, объемный джоулев нагрев и перенос тепла за счет тока электронов (эффект Томсона); охлаждение плазмы за счет излучения. Энерговклад вязкой диссипации оказался пренебрежим. Замыкание системы включало уравнение неразрывности по току, закон Ома, закон Био-Савара-Лапласа в форме связи плотности тока и градиентов потенциала самоиндуцированного магнитного поля.

Рис. 1. Общий вид канала сильноточного плазмотрона с вынесенной дугой – (а), расчетная область – (б). Все размеры в мм. *С* – вольфрамовый катод, *А* – медный анод, *N* – медное сопло-диафрагма.

Граничные условия представлены в Таблице 1. В работе [8] анод считался теплоизолированным, в данной работе была необходима информация по потерям тепла на аноде, поэтому потребовалось обоснование выбора значения коэффициента теплопередачи α' путем валидации расчетов по энергобалансу потерь в анод, которое приведено ниже. Термодинамические и транспортные свойства аргона, данные по интегральному коэффициенту теплового излучения в диапазоне температур 300–30000 К заимствованы из [9–11]. Система МГД-уравнений с граничными условиями и заданными свойствами газа решалась методом конечных элементов с помощью пакета COMSOL Multiphysics 5.6. Для обеспечения сходимости решения на катоде задавались условия проскальзывания, а температура аргона в начале расчетов в расчетной области задавалась равной 10000 К, чтобы гарантировать его ионизацию.

	Скорость, давление, расход	Теплоперенос	Уравнения Максвелла
AB	Условия проскальзывания	<i>T</i> = 3500 К	Магнитная изоляция и сила тока I
BC	Условия проскальзывания	Теплоизолир.	Магнитная/электрическая изоляция
CDE	Давление 10 ⁵ Па, без возвратных течений	<i>T</i> = 293 K	Магнитная/электрическая изоляция
EFGHI, JK	Условия прилипания	$\alpha' = 750 \text{ Bt/(m^2*K)}$	Магнитная/электрическая изоляция
IJ	Расход аргона $G_{\rm Ar} = 5$ г/с	<i>T</i> = 300 K	Магнитная/электрическая изоляция
KL	Условия прилипания	$\alpha' = 750 \text{ Bt/(m^2*K)}$	Магнитная изоляция, заземление V = 0
LA	Осевая симметрия	Осевая симметрия	Осевая симметрия

Таблица 1. Граничные условия.

3. Валидация расчетной модели по балансу тепловых потоков на аноде

Рабочая формула для расчета плотности теплового потока из аргоновой плазмы через анод в охлаждающую его воду в условиях диффузной привязки дуги к аноду имеет следующий вид в дифференциальной форме [1–3]:

$$q = \alpha' \Delta T + j \left(\varphi_{a} + \frac{5}{2} k T_{e} / e \right) = j U_{eq} .$$
⁽¹⁾

Здесь $\alpha \Delta T$ отвечает за конвекционный теплоподвод от плазмы к поверхности анода, ΔT – разность температур плазмы на границе прианодной области и внешней стенки анода (500 К), данная величина полностью берется из численного расчета. Второй член суммы – тепловой поток за счет переноса тока плотностью ј на аноде – отвечает за 70-80% всего тепла, отдаваемого в воду. *j*φ_a – тепловыделение в кристаллической решетке меди при «конденсации» упорядоченно движущихся электронов, $\varphi_a = 4.5 \text{ B} - \text{работа выхода электрона}$ из меди; $j \cdot (2.5 \cdot kT_e/e)$ – тепловая энергия, переносимая током электронов с температурой T_e из прианодной области, k – постоянная Больцмана, е – заряд электрона [1]. Общий вклад характеризуется вольтовым эквивалентом тепловых потерь на медном аноде Ueq, для диффузной привязки, принят равным 5.6 В. Для оценки температуры электронов T_e были привлечены результаты расчетов по предложенной в [12] 1D модели неравновесных процессов в прианодной области аргоновой плазмы для плотности тока *j*=0.9·10⁷ A/м², характерной для диффузной привязки. Получено, что T_e на поверхности анода составляет примерно 1/3 температуры Т равновесной плазмы аргона на внешней границе прианодной области толщиной ~1 мм, при этом ионный ток здесь не превышает 8% от общего значения. Получив из численного расчета усредненные по площади диффузной привязки значения *j* и температуры T, можно рассчитать величину q и полный тепловой поток Q в анод. В выражении (1) отсутствует вклад лучистых потерь столба дуги, поскольку по экспериментальным данным из [13] при схожих режимных параметрах аргоновой дуги энерговклад излучения аргоновой плазмы на торцевой медный анод составил менее 5%, в пределах ошибки калориметрических измерений *Q*. В [13] диаметр зоны привязки дуги к аноду определялся по диаметру светящейся области, показан линейный характер зависимости этого диаметра от тока дуги І. С целью валидации расчетов было проведено моделирование в условиях экспериментов [13] для токов 150, 200 и 250 А, соответствующие диаметры диффузной привязки были равны 5.2, 6.1 и 6.4 мм, при этом аргон подавался строго радиально на анод (в [13] аргон подавался с дополнительной круткой). Полученные три значения Q были наложены на прямую линию зависимости Q(I) [1, 13], отклонение от прямой составило 10-20%, вольтов эквивалент – примерно 6.5 В, что выше на 16-18% данных экспериментов. Исходя из результатов моделирования, было вычислено отрицательное падение потенциала в прианодной области по формуле Лэнгмюра [2]

$$U_a = -\frac{kT_e}{e}\ln\left(\frac{j_{ch}}{j}\right),$$

где $j_{ch} = 10^8 \text{ A/m}^2$ – хаотический тепловой ток электронов вблизи поверхности анода [13]. Вычисленное значение $U_a = -1.2$ В также согласуется с ожидаемым теоретически –1 В [2, 12].

4. Результаты расчетов с профилированнем поверхности медного анода

В случае плоского медного анода рассчитываемая по формуле (1) величина q должна быть как можно ниже критического удельного теплового потока $q_{\rm cr,fl} = 5 \cdot 10^7$ Вт/м², который можно отвести в стационарном режиме без изменения агрегатного состояния меди [1]. Для медного анода с углублением полусферической формы радиусом R критический удельный тепловой поток определяется из выражения вида [14]:

$$q_{\rm cr,R} = q_{\rm cr,fl} + \lambda \Delta T_{\rm cr} / R \,. \tag{2}$$

В (2) $\lambda = 400 \text{ Br/(m}^2 \cdot \text{K})$ – теплопроводность меди, $\Delta T_{cr} = 934 \text{ K}$ – максимальная разность температур по толщине медной стенки (разность температур между температурой плавления меди 1083 °C на наружной поверхности стенки и 149 °C – температурой кипения охлаждающей воды на внутренней стенке при давлении 5 атм). Расчет проводился для тока I = 600 A, при котором диффузная привязка на плоском медном аноде не сохраняется, при этом радиус углубления R задавался больше или равным радиусу привязки на этом токе (4 мм) до начала контракции и не превышал радиуса плоского анода (8 мм). Поля температур и линии тока аргона, распределения плотности электрического тока и эквипотенциальные поверхности между анодом и соплом, а также за соплом представлены на Рис. 2 для трех профилей анода: плоского, с углублением радиусом 5 мм, с углублением радиусом 8 мм.

Результаты расчетов представлены в одинаковом масштабе. Из Рис. 2 видно, что во всех вследствие радиально-осевой инжекции аргона над анодом случаях образуется рециркуляционная зона с выносом холодного аргона с периферии канала в его центральную часть вблизи анода. Обратное течение плазмы в сторону анода усиливается из-за увеличения размера зоны рециркуляции в углублении анода, что снижает на нем тепловую нагрузку, это особенно заметно для углубления радиусом 8 мм. Образуется также плазменная струя в сторону катода, т.к. формируется магнитный «насос» в цилиндрической части сопла как результат наличия здесь области максимальной плотности электрического тока. С увеличением размера углубления струя все больше вытягивается в сторону катода, при этом напряжение между катодом и анодом увеличивается с ~60 В для плоского анода до примерно 90 В для профилированного. Видно, что на профилированном аноде токоперенос сосредотачивается на периферии углубления и его кромках, что увеличивает тепловую нагрузку в этой части анода. Радиальные распределения по поверхности анода плотностей тока *j*, а также удельных тепловых потоков *q* и соответствующих критических величин приведены на Рис. 3 для плоского анода, углублений радиусом 4, 5 и 8 мм. Схожий характер кривых ј и q объясняется тем, что токоперенос вносит основной энерговклад в нагрев электрода. В случае плоского анода удельные потоки тепла распределены более равномерно в сравнении с анодами с углублением, у которых тепловая нагрузка на кромках резко возрастает, хотя во всех случаях удельные тепловые потоки не превышают критических значений.

5. Выводы

Проведен ряд численных расчетов МГД процессов в канале сильноточного плазмотрона с вынесенной аргоновой дугой атмосферного давления в приближении ЛТР как для плоского медного анода, так и для анода с полусферическим углублением различного размера.

Рис. 2. Поля температур и линии тока аргона – (а), распределения плотности электрического тока и эквипотенциальные поверхности – (б) в области канала между анодом и соплом. Слева направо: плоский анод, анод с углублением радиусом *R* = 5 мм, анод с углублением радиусом *R* = 8 мм.

Рис. 3. Радиальные распределения на поверхности анода плотностей тока *j* – (а); удельных тепловых потоков *q* и соответствующих критических величин *q*_{cr} – (б).

Во всех случаях отмечается формирование магнитного «насоса» на оси канала в области цилиндрической части сопла, над анодом образуется рециркуляционная зона с интенсивным вовлечением холодного аргона с периферии канала в его центральную часть. Реверсивный характер течения усиливается вследствие увеличения размера зоны рециркуляции в углублении анода, что способствует снижению на нем тепловой нагрузки. Показано, что во всех вариантах профиля анода удельные тепловые потоки остаются ниже критических значений, и диффузный характер привязки дуги должен сохраняться. Расчет показывает также, что в данной геометрии анодного узла вариант плоского анода предпочтительнее анода с полусферическим углублением, поскольку в первом случае удельные потоки тепла распределены более равномерно в сравнении со вторым, при котором тепловая нагрузка на кромках углубления имеет характер острого пика.

Благодарность

Работа выполнена в рамках государственного задания ИТПМ СО РАН.

6. Список литературы

- [1] М.Ф. Жуков, А.С. Коротеев и Б.А. Урюков, *Прикладная динамика термической плазмы*. Новосибирск: Наука, 1975.
- [2] S.M. Shkol'nik, Anode phenomena in arc discharges: a review, *Plasma Sources Science and Technology*, vol. **20**, 013001, 2011; doi: 10.1088/0963-0252/20/1/013001
- [3] J. Heberlein, J. Mentel, and E. Pfender, The anode region of electric arcs: a survey, *Journal of Physics D: Applied Physics*, vol. **43**, 023001, 2010; doi: 10.1088/0022-3727/43/2/023001
- [4] М.Ф. Жуков, А.С. Аньшаков, С.П. Ващенко, Г.-Н.Б. Дандарон и К. Заятуев, Образование контрагированного анодного пятна в генераторах низкотемпературной плазмы, Изв. Сибир. Отдел. Акад. Наук СССР, Сер. Техн. Наук, №4(1), 62, 1987.
- [5] F.G. Baksht, G.A. Dyuzhev, N.K. Mitrofanov, and S.M. Shkol'nik, Experimental investigation of the anode region of a free-burning atmospheric pressure inert gas arc: II. Intermediate current regime – multiple anode constriction, *Technical Physics*, vol. 42, 35, 1997; doi: 10.1134/1.1258649
- [6] А. Жайнаков, С.П. Ващенко и Р.М. Урусов, Влияние углубления в анодном узле плазмотрона на характеристики потока плазмы, *Мат-лы VIII Всесоюз. конф. по физике* низкотемпературной плазмы, т. **1**, 59, Минск, СССР, 1991.
- [7] K.C. Hsu, K. Etemadi, and E. Pfender, Study of the free-burning high-intensity argon arc, *Journal of Applied Physics*, vol. **54**, 1293, March 1983; doi: 10.1063/1.332195
- [8] A. Savas and V. Ceyhun, Finite element analysis of GTAW arc under different shielding gases, *Computational Materials Science*, vol. 51, 53, January 2012; doi: 10.1016/j.commatsci.2011.07.032
- [9] M.I. Boulos, P.L. Fauchais, and E. Pfender, *Handbook of Thermal Plasmas*, Springer Nature Switzerland AG, 2023.
- [10] A.B. Murphy and C.J. Arundell, Transport Coefficients of Argon, Nitrogen, Oxygen and Argon-Oxygen Plasmas, *Plasma Chemistry and Plasma Processing*, vol. 14, 451, 1994; doi: 10.1007/BF01570207
- [11] A.B. Murphy and E. Tam, Thermodynamic properties and transport coefficients of arc lamp plasmas: argon, krypton and xenon, *Journal of Physics D: Applied Physics*, vol. 47, 295202, 2014; doi: 10.1088/0022-3727/47/29/295202
- [12] I.P. Nazarenko and I.G. Panevin, Analysis of the Near-Anode Processes Characters in Argon Arc Discharges of High Pressure, *Contributions to Plasma Physics*, vol. 29, 251, 1989; doi: 10.1002/ctpp.2150290303
- [13] А.С. Аньшаков, Г.-Н.Б. Дандарон, В.К. Вастюк, Х.Ц. Заятуев и Ю.И. Сухинин, Исследование теплового потока в анод, *Мат-лы VII Всесоюз. конф. по физике* низкотемпературной плазмы, т. **2**, 173, Алма-Ата, СССР, 1977.
- [14] M.A. Mikheyev, Fundamentals of Heat Transfer, Moscow: MIR Publishers, 1968.