doi: 10.56761/EFRE2024.C2-O-043403

Особенности синтеза сиалона в результате облучения высокоэнтальпийной плазмой и импульсным электронным пучком порошковой смеси AlN и Si₃N₄

В.А. Власов¹, А.А. Клопотов¹, К.А. Безухов¹, Ю.Ф. Иванов², В.Ю. Лавров^{1,*}, Н.Н. Голобоков³, М.С. Сыртанов⁴, Г.Г. Волокитин¹, С.Ю. Шишулькин⁵, О.М. Лоскутов¹

¹Томский Государственный Архитектурно-Строительный Университет, Томск, Россия ²Институт сильноточной электроники СОРАН, 634055, Томск, Россия ³Томский научный центр СО РАН, Томск, Россия ⁴Национальный исследовательский Томский политехнический университет, Томск, Россия ⁵Бурятский государственный университет, Улан-Удэ, Россия *valentinlavrov99@gmail.com

Аннотация. Представлены результаты исследований влияния облучения высокоэнтальпийной плазмой и импульсным электронным пучком на структуру и фазовый состав порошковой смеси AlN и Si₃N₄.Образцы для эксперимента были подготовлены из компонентов: β -Si₃N₄, AlN, H₄N₂CO, Na₂SiO₃. Методами рентгенофазового анализа установлено, что при облучении высококонцентрированными потоками высокоэнтальпийной плазмы смеси порошков нитрида кремния, нитрида алюминия и соли карбамида происходит образование многофазной смеси, в состав которой входит β -Si₅AlON₇. Проведено облучение образцов из этой серии импульсным электронным пучком и выявлено образование двух кристаллических модификации сиалона: Si₄Al₂O₂N₆ и β -Si₅AlON₇. Установлено, что в зависимости от природы и энергии воздействия образуются различные формы β -SiAlON с различным химическим составом, разными атомными объемами на один ион и разной степенью гексагональности.

Ключевые слова: сиалон, высокоэнтальпийная плазма, импульсный электронный пучок, рентгеноструктурный анализ, кристаллическая структура.

1. Введение

Синтез соединений на основе Si₃N₄ позволяет создать материалы, обладающие хорошим сочетание физико-химических свойств. К этим соединениям относятся α-SiAlON и β-SiAlON [1]. Установлено, что структура β-SiAlON является твердым раствором переменного состава на основе β-Si₃N₄. В соединении β-SiAlON атомы Si и Al занимают одинаковый тип узлов в кристаллической решетке, а атомы N и O занимают другой тип узлов в кристаллической решетке [2]. β-SiAlON обладает широкой областью гомогенности и записывается в виде химического соединения по формуле $Si_{6-z}Al_zO_zN_{8-z}$ (1 $\leq z\leq 4.2$) [3]. α -SiAlON описывается формулой Me_mSi_{12-(m+z)}Al_zO_zN_{16-z} (Ме – ион металла). Между этими соединениями возможны фазовые переходы α -SiAlON+O₂ \rightarrow β -SiAlON и β -SiAlON+N₂ $\rightarrow \alpha$ -SiAlON[3]. α -sialon и β -SiAlON обладают разными физико-механическими свойствами [4, 5]. В настоящее время установлено порядка 10-ти методов синтеза соединений на основе SiAlON: реакционным спеканием из нитридов и оксидов кремния и алюминия; самораспространяющимся высокотемпературным синтезом (СВС), искровым плазменным спеканием, карботермическим процессом и другие. Такое большое количество способов синтеза SiAlON позволяет получать разное соотношение между соединениямиα-SiAlON и β-SiAlON. Перспективным является подход, основанный на синтезе SiAlON при помощи высокоэнергетических воздействий разной природы. В настоящее время работ, посвященных этой проблеме, немного [8, 9].

Целью настоящей работы являлось исследование и анализ особенностей синтеза SiAlON при взаимодействии высокоэнтальпийной плазмы и электронных импульсных пучков с порошковой смесью AlNu Si₃N₄, а также, получить вероятную схему возможных реакций при образовании фаз сиалона в результате высокоэнергетических воздействий.

2. Материалы, методы синтеза и методики исследования

В качестве исходных материалов были использованы порошки: β -Si₃N₄, AlN, H₄N₂CO (раствор мочевины) и связующий компонент-Na₂SiO₃ (жидкое стекло). Порошки были перемешаны и спрессованы в бруски в форме параллелепипедов с размерами 45×15×45 мм. Полученные таким образом образцы отжигали в печи при температуре 400 °C в течение 30 минут.

Первую группу отожженных образцов обрабатывали термической плазмой, создаваемой низкотемпературным плазменным генератором [6]. В [7] установлено, что среднемассовая температура плазменной струи в области контакта с поверхностью образца достигает (4000–6000) К для двухатомных и многоатомных газов с усредненными значениями их энтальпии ~2·10² ккал/моль [7].

Вторую группу образцов подвергали обработке импульсным электронным пучком на установке «СОЛО» [10]. Параметры облучения: энергия ускоренных электронов 18 кэВ, плотность энергии пучка электронов 15 Дж/см², длительность импульса 200 мкс, количество импульсов 50, частота следования импульсов 0.3 с⁻¹. Облучение проводили в атмосфере аргона при остаточном давлении 0.02 Па. Воздействие импульсным электронным пучком с такими параметрами создает кратковременно высокую температуру на поверхности образцов в пределах (1000–1500) К.

Рентгеноструктурное исследование осуществляли на дифрактометре SHIMADZUXRD-7000S с использованием Си_{Кα} излучения. Анализ дифрактограмм проводили при помощи программного комплекса Match Crystal Impact.

Исследования структуры и элементного состава проводили методами сканирующей электронной микроскопии на электронном микроскопе QUANTA 200 3D.

3. Результаты и обсуждение

3.1. Результаты структурных исследований

Установлено, что облучение образцов низкотемпературной плазмой привело к протеканию термохимической реакции, сопровождающейся формированием градиентной структуры. Методами оптической (рис. 1a) и сканирующей электронной микроскопии (рис. 1 δ -2) хрупкого излома выделены три характерных слоя, характеризующихся морфологией структурных элементов. Показано, что в поверхностном слое (рис. 1a, слой 1),который непосредственно взаимодействовал с плазменным потоком, наблюдается образование частиц с блочной структурой (рис. 16). Переходный слой (рис. 1a, слой 2), характеризуется волокнистой структурой, состоящей из разных по морфологии и размерам частиц игольчатой (нитевидной) или пластинчатой формы (рис. 1e). Слой 3 (рис. 1a) сформирован различными по морфологии и размерам сферическими (глобулярными) частицами (рис. 1e).

Рис. 1. Оптическая микрофотография скола образца с границей фронта плазмохимического синтеза после взаимодействия материала с потоком высокотемпературной плазмы (*a*) и СЭМ изображения разных областей поверхности излома образца (*б* – область 1; *в* – область 2; *г* – область 3).

Рентгеноструктурный анализ образцов, обработанных низкотемпературной плазмой (рис. 2, I), выявил наличие фазы β -Si_{6-Z}Al_ZO_ZN_{8-Z}c z=1 (AlN₇OSi₅) с пространственной группой *P63*. Также на дифрактограмме обнаружены рентгеновские рефлексы от фаз исходных компонентов, участвующих в плазмохимическом синтезе. На дифрактограммах кроме кристаллических фаз было зафиксирован диффузный широкий максимум в области малых углов, относящийся к рентгеноаморфной фазе.

Рис. 2. Дифрактограммы от образцов, облученных низкотемпературной плазмой (I) и импульсным электронным пучком (II):6-д- штрих диаграммы соединений из базы данных Match Crystal Impact.

Рентгеноструктурные исследования образцов, облученных импульсным электронным пучком, позволили выявить образование новых соединений β Si₅AlON₇ и Si₄Al₂O₂N₆ и следы исходных компонент Si₃N₄ и AlN (рис. 2, II).

Таблица 1. Структурные данные соединений SiAlON, полученных в результате облучения порошковой смеси на основе компонентов AlNu Si₃N₄ плазмой и импульсным электронным пучком.

Метод облучения	Фаза	Параметры элементарной ячейки	Атомный объем, нм ³	Параметры элементарной ячейки (Match Crystal Impact)
Плазмой	β - Si ₅ AlON ₇	a=7.6076, c=2.9278 a/c=0.3848	0.01075	a=7.6072, c=2.9274 a/c=0.3848
Электронно- импульсным	β - Si ₅ AlON ₇	a=7.6243, c=2.9208 a/c=0.3848	0.01075	<i>a</i> =7.6072, <i>c</i> =2.9274 <i>a/c</i> =0.3848
пучком	$Si_4Al_2O_2N_6$	<i>a</i> =7.6634, <i>c</i> =2.960 <i>a/c</i> =0.3862	0.01085	<i>a</i> =7.6664, <i>c</i> =2.9595 <i>a/c</i> =0.3862

На основе данных рентгеноструктурного анализа были определены параметры элементарных ячеек соединений SiAlON, полученных облучением высокоэнтальпийной плазмой и импульсным электронным пучком. На основе структурных данных рассчитаны атомные объемы приходящихся на один ион. Результат расчета представлен в таблице 1. Видно, что β–Si₅AlON₇, полученный облучением высокоэнтальпийной плазмой и импульсным

электронным пучком имеет одинаковые атомные объемы на один ион и одинаковые значения степени гексагональности a/c. Тогда как β –Si₄Al₂O₂N₆, полученный в результате облучения импульсным электронным пучком, имеет другое значение атомного объема на один ион и другое значение величины a/c.

Структура поверхностного слоя образца, облученного импульсным электронным пучком, представлена на рис. 3. Обнаружено, что высокоскоростной нагрев и высокоскоростная закалка сопровождаются формированием структуры различного масштабного уровня, изменяющегося от 200 мкм (рис. 3*a*) до (2–3) мкм (рис. 3*в*). Формирующаяся структура характеризуется неоднородностью распределения химических элементов, о чем свидетельствуют результаты микрорентгеноспектрального анализа, представленные на рис. 3*г*.

Рис. 3. СЭМ изображение структуры образца на разных масштабных уровнях (*a*, *б*, *в*), формирующейся после облучения импульсным электронным пучком; *c* – изображение участка образца, представленного на (*б*), полученное в характеристическом рентгеновском излучении атомов C, N, O, F, Al, Si.

Данные микрорентгеноспектрального анализ, представленные на рис. 4, наглядно показывают неоднородное распределение химических элементов в образце после обработки электронным пучком. Хорошо видны мелкие локальные области, с более высоким содержанием кислорода. В тоже время наблюдается однородное распределение Al, N и Si по всей поверхности исследуемого участка образца. Такое распределение элементов в материале после облучения импульсным электронным пучком свидетельствует о том, что в этих локальных местах происходит образование соединений с составами Si₅AlON₇ иSi₄Al₂O₂N.

Рис. 4. Изображение поверхности образца, облученного импульсным электронным пучком, полученноев характеристическом рентгеновском излучении атомов O(*a*); Al (*b*); N (*b*); Si (*z*); на (*d*) представлены энергетические спектры, полученные с исследуемой области образца.

3.2. Термохимические процессы при нагреве образца из смеси компонентов β -Si₃N₄, AlN, H_4N_2CO , Na_2SiO_3 при синтезе сиалона

На основе расчетов, проведенных при помощи программы TERRA, была построена вероятная схема образования фаз сиалона при повышении температуры от 293 К до 3000 К с

учетом стабильности рассматриваемых соединений в разных температурных областях [11, 12] (рис. 5). Условно на этой диаграмме в первом приближении было выделено шесть основных областей, в которых последовательно происходят реакции разложения исходных компонентов и синтез новых соединений. Каждая область характеризуется определенным набором химических элементов и соединений. Для каждой области приведены характерные химические реакции.

Рис. 5. Вероятная схема возможных реакций при образовании фаз сиалона при нагреве смеси из компонентов β-Si₃N₄, AlN, H₄N₂CO, Na₂SiO₃ в температурной области от 293 К до 3000 К.

Здесь необходимо отметить, что эта схема получена для условий последовательного и медленного повышения температуры образца, состоящего из смеси компонентов Si₃N₄, AlN, H₄N₂CO, Na₂SiO₃. В тоже время надо понимать, что эта диаграмма дает только общие представления о процессах, происходящих в такой смеси компонентов при нагреве. В условиях облучения высококонцентрированными потоками энергий разной природы непроводящего материала возможны самые разнообразные химические реакции, которые протекают в сугубо неравновесных условиях в локальных, хаотическим образом распределенных, областях образца. Это связано с высокими скоростями нагрева верхних слоев образца и, как следствие, высокого градиента температур. То, что это явление действительно имеет место, подтверждают данные электронно-микроскопических исследований.

4. Заключение

Методами рентгеноструктурно анализа, оптической и сканирующей электронной микроскопии, микрорентгеноспектрального анализа установлено, что в результате облучения потоком низкотемпературной плазы и импульсным электронным пучком смеси порошков нитрида кремния, нитрида алюминия и соли карбамида происходит синтез β-SiAlON. В зависимости от природы и энергии воздействия образуются различные формы β-SiAlON с различным химическим составом, разными атомными объемами на один ион и различной степенью гексагональности.

На основе проведенных исследований влияния высокоэнергетических воздействий на многокомпонентную смесь β-Si₃N₄, AlN, H₄N₂CO, Na₂SiO₃ в широкой температурной области от 293 К до 3000 К предложена оригинальная вероятная схема возможных реакций при образовании фаз сиалона.

Благодарности

Исследование выполнено в рамках государственного задания Министерства науки и высшего образования Российской Федерации (проект № FEMN-2023-0003)

5. Литература

- [1] Р.А. Андриевский, Успехи химии, 64(4), 311–329, 1999.
- [2] I.M. Low, *Ceramic matrix composites*. *Microstructure, Properties and applications*. Australia: Woodhead publishing, 2006.
- [3] M.H. Lewis, A.R. Bhatti, et al., The microstructure of sintered Si-Al-ON ceramics, *Mare Sci.*, **15**, 103–113, 1980.
- [4] M.M. Malki, R.M.A. Khan, A.S. Hakeem, et al., Effect of Al metal precursor on the phase formation and mechanical properties of fine-grained SiAlON ceramics prepared by spark plasma sintering, *J. Eur. Ceram. Soc.*, **37**, 1975–1983, 2017.
- [5] J. Zhang, X. Li, W. Gong, P. Chen, B. Zhu, First-principles simulation of the growth of in situ synthesised β-Sialon and its effects on the thermo-mechanical properties of Al2O3-C refractory composites, *Journal of the European Ceramic Society*, **39**(8), 2739–2747, 2019, doi: 10.1016/j.jeurceramsoc.2019.03.015
- [6] В.А. Власов, Г.Г. Волокитин, Н.К. Скрипникова, О.Г. Волокитин, Плазменные технологии создания и обработки строительных материалов. Томск: НТЛ, 512, 2018.
- [7] И.А. Тихомиров, В.А. Власов, Ю.Ю. Луценко, Физика и электрофизика высокочастотного факельного разряда и плазмотроны на его основе. Москва: Энергоатомиздат, 2002.
- [8] V.A. Vlasov, A.A. Klopotov, K.A. Bezukhov, et al., *Features of obtaining SiAlON by the plasma-chemical method, AIP Conference Proceedings*, **2509**, 020022, 2022,

doi: 10.1063/5.0084921

- [9] Г.Г. Волокитин, В.В. Шеховцов, А.А. Клопотов, О.Г. Волокитин, К.А. Безухов, Электродуговой плазмохимический синтез фазы β-SiAlON, Известия высших учебных заведений. Физика, 65(5), 128–130, 2022, doi: 10.17223/00213411/65/5/128
- [10] Н.Н. Коваль, Ю.Ф. Иванов, Наноструктурирование поверхности металлокерамических и керамических материалов при импульсной электронно-пучковой обработке, Известия ВУЗов. Физика, 51(5), 60–70, 2008.
- [11] А.И. Рабухин, В.Г. Савельев, Физическая химия тугоплавких неметаллических и силикатных соединений. Москва: ИНФРА, 2009.
- [12] Н.А. Топоров, В.П. Барзаковский, В.В. Лапин, Н.Н. Курцева, Диаграммы состояния силикатных систем. Справочник. Выпуск первый. Двойные системы. Л: Наука, 1969.