doi: 10.56761/EFRE2024.C4-O-032101

Свойства углеродных покрытий, полученных в униполярном и биполярном комбинированном режиме импульсного дугового и магнетронного распыления

М.И. Ажгихин^{1,2,*}, В.О. Оскирко^{1,2}, А.Н. Захаров¹, А.С. Гренадеров¹, А.А. Соловьев¹

¹Институт Сильноточной Электроники СО РАН, Томск, Россия ²ООО «Прикладная электроника», Томск, Россия *maxazhg@gmail.com

Аннотация. Комбинированный режим импульсного дугового и магнетронного распыления является одним из способов получения алмазоподобных покрытий (DLC). В настоящей работе исследуется биполярная модификация комбинированного режима, расширяющая возможности обычной униполярной модификации, используемой ранее. После завершения отрицательного импульса дугового разряда в биполярном режиме формируется положительный импульс, направленный на увеличение энергии ионов, бомбардирующих подложку. Положительный импульс позволяет контролировать энергию ионов при напылении покрытий на непроводящих подложках, когда отсутствует возможность подачи потенциала смещения. В данной работе изучаются свойства углеродных покрытий, полученных в биполярных и униполярных режимах комбинированного распыления, а также в режимах магнетронного распыления импульсами высокой мощности (HiPIMS). В частности, сравнивается содержание sp³-фазы, твердости и износостойкости покрытий.

Ключевые слова: DLC, HiPIMS, дуговое испарение, алмазоподобный углерод, твердость, износостойкость

1. Введение

Алмазоподобные покрытия (DLC), характеризующиеся высоким содержанием sp³-фазы, являются уникальным материалом ввиду низкого коэффициента трения, высокой твердости и износостойкости. Получение DLC является непростой задачей, поскольку требуется обеспечение оптимальных энергетических условий синтеза. В частности, необходимо контролировать энергию пленкообразующих частиц [1]. Для получения DLC используются методы дугового, импульсного лазерного и ионно-пучкового осаждения. Наиболее часто используется дуговое осаждение, характеризующееся высокой степенью ионизации и энергии атомов углерода. Дело в том, что энергией атомов легко управлять, когда они находятся в ионизированном состоянии. Недостатком дугового испарения является наличие макрочастиц в потоке распыленного материала. Они образуются в катодном пятне и, попадая на подложку, образуют дефекты в покрытии. Макрочастицы могут быть удалены из потока с помощью специальных фильтров. Но их применение приводит к усложнению конструкции системы и снижению её производительности. По этой причине осуществляется поиск альтернативных способов напыления. Магнетронное распыление позволяет избежать образования макрочастиц, но из-за низкой степени ионизации углерода обеспечивается низкое содержание sp³-фазы. Магнетронное распыление импульсами высокой мощности (HiPIMS) позволяет повысить содержание sp³-фазы, но не выше 45% [2].

В работе [3] был предложен комбинированный режим импульсного дугового и магнетронного распыления DLC. Особенность данного метода заключается в использовании коротких дуг, которые ионизируют распыленные атомы углерода, но не приводят к образованию большого количества макрочастиц. Инициирование дуги происходит в результате формирования импульса магнетронного разряда высокой мощности, когда разрядный ток достигает пороговой величины. Амплитуда разрядного тока может достигать нескольких сотен ампер, а время импульса варьируется от нескольких единиц до нескольких десятков микросекунд. Комбинированные режимы распыления позволяют получать покрытия с содержанием sp³-углерода до 80% [4].

Помимо ионизации углерода, важно иметь возможность контролировать энергию ионов. Недостаток или избыток энергии ионов приводит к графитизации осаждаемого материала (т.е. к увеличению содержания sp²-углерода). В случае проводящих подложек на них подается ускоряющий потенциал смещения нужной величины. Существует потребность осаждения DLC покрытий на подложки из непроводящих материалов: керамика, полимеры и т.д. В этом случае отсутствует возможность подачи потенциала смещения непосредственно на подложку. Для решения этой проблемы предложено использовать биполярный комбинированный режим магнетронного и дугового распыления [5]. Отличительной особенностью этого режима заключается в наличии положительного импульса. Он формируется после погасания дуги и приводит к ускорению ионов, бомбардирующих подложку. Данный принцип используется в технологии магнетронного распыления биполярными импульсами высокой мощности (далее биполярный HiPIMS).

Настоящая работа посвящена исследованию свойств углеродных покрытий, полученных, как в биполярном, так и в униполярном режимах комбинированного импульсного дугового и магнетронного распыления. Также рассматриваются покрытия, полученные с помощью униполярного и биполярного HiPIMS. Сравниваются структура, механические и трибологические свойства покрытий.

2. Экспериментальная часть

На Рис. 1 изображена схема экспериментальной установки, используемой для напыления углеродных покрытий. Напыление покрытий осуществлялось с помощью двух магнетронов М1 и М2 с мишенями из графита и хрома, соответственно. Максимальная величина тангенциальной составляющей магнитного поля над поверхностью мишени составляет 730 Гс. Диаметр мишеней равен 100 мм. Питание магнетрона М1 с графитовой мишенью осуществлялось с помощью источника питания серии АРЕL-М-5ВРНРР-800, предназначенного для магнетронного распыления импульсами высокой мощности (ООО «Прикладная электроника», Россия).

Рис.1. Схема экспериментальной установки.

Амплитуда выходных импульсов тока источника питания М1 может достигать 1400 A, а выходное напряжение – 800 В. Частота импульсов регулируется в диапазоне от 20 Гц до 15 кГц, при длительности импульсов от 3 до 250 мкс.

Напыление покрытий производилось на полированные образцы из сплава ВК-8 размером 10×10 мм², которые прошли очистку в ультразвуковой ванне. Расстояние от мишеней до подложки составляло 100 мм. Камера откачивалась до остаточного давления

 1×10^{-3} Па, рабочее давление аргона до составляло 0.12 Па. С помощью ионного источника (ИИ) с замкнутым дрейфом электронов подложки очищали при напряжении 2 кВ и токе разряда 50 мА в течение 5 минут. Затем на подложки напыляли подслой хрома толщиной 40–60 нм с помощью магнетрона М2. Осаждение углеродных покрытий проводили при плавающем потенциале подложки. В процессе эксперимента проводилось измерение разрядного тока I_d и напряжения U_d на выходе источника питания M1.

В ходе выполнения работы были получены серии образцов в четырех режимах, основные параметры которых приведены в Таблице 1. Время напыления составляло 3±0.5 часа. Толщина покрытий во всех рассматриваемых режимах составляет ≈ 1 мкм.

Таблица 1. Параметры осаждения.							
Режим	$I_{d.avg}$, [A]	$U_{d.max}$, [B]	<i>t</i> _p , [мкс]	<i>Е</i> _{<i>p</i>} , [Дж]	<i>F</i> _p , [Гц]	$P_{d.avg}$, [BT]	
Униполярный HiPIMS	0.80	750	10	0.04	8500	330	
Биполярный HiPIMS	1.57	750	27	0.08	8500	660	
Униполярный комбинированный	1.27	750	70	6.7	40	270	
Биполярный комбинированный	1.41	750	170	8.5	40	350	

где $I_{d.avg}$ – средний за период ток разряда, $U_{d.max}$ – максимальное напряжение отрицательного импульса, t_p – длительность импульса тока, E_p – энергия в импульсе, F_p – частота импульсов, $P_{d.avg}$ – средняя мощность.

Нанотвердость покрытий измерялась наноиндентором Nanotest 600 (MicroMaterials, Великобритания) и определялась по методу Оливера-Фарра при нагрузке 10 Н.

Измерения износостойкости проводились на трибометре собственного производства в геометрии шар-диск. В качестве контртела использовался шарик из сплава ВК-8 диаметром 6 мм. Дистанция износа составляла от 1000 до 1500 м, скорость скольжения контртела – 50 мм/с, нагрузка – 5 H, радиус трека износа – 3.5 мм.

Для исследования поверхности и элементного состава покрытий использовался растровый электронный микроскоп Quanta 200 (FEI Company, USA). Химический состав поверхности покрытий определяли с помощью метода рентгеновской фотоэлектронной спектроскопии (РФЭС) на приборе фирмы SPECS Surface Nano Analysis GmbH (Германия).

3. Результаты

На Рис. 2 представлены осциллограммы разрядного тока I_d и напряжения U_d , полученные в режимах, указанных в Таблице 1. Максимальное напряжение отрицательного импульса во всех режимах равнялось 750 В. Это напряжение практически не изменялось в режимах HiPIMS, а в комбинированных режиме уменьшалось до 100–200 В при зажигании дугового разряда. В биполярных режимах после уменьшения тока дуги до 0 на мишень подавались положительные импульсы напряжения амплитудой 100 В. Максимальный ток разряда в режимах HiPIMS достигал 20 А, а в комбинированных режимах ≈ 1 кА. В униполярном и биполярном HiPIMS частота импульсов составляла 8.5 кГц, при энергии импульсов несколько десятков мДж. В комбинированных режимах энергия импульсов достигала нескольких Дж, а частота составляла всего несколько десятков Гц. Приблизительно 85% от общей мощности разряда расходовалось на питание магнетронного разряда. При этом средняя интегральная мощность дугового разряда составляла всего 15% от общей мощности. Доля мощности, расходуемой на формирование положительных импульсов в биполярных режимах, составляла всего $\approx 2\%$.

Химический состав покрытий, определенный методом энергодисперсионной спектроскопии, показан в Таблице 2. Видно, что все покрытия имеют примеси в виде

кислорода и аргона, которые содержатся в остаточной атмосфере камеры (O₂) или напускаются в нее в качестве рабочего газа (Ar). Стоит отметить, что покрытие, полученное в режиме униполярного HiPIMS, содержит в себе в 2 раза больше кислорода по сравнению с другими покрытиями.

Рис. 2. Осциллограммы разрядного тока и напряжения в режимах: (а) униполярный комбинированный, (б) униполярный HiPIMS, (в) биполярный комбинированный, (г) биполярный HiPIMS.

Таблица 2. Состав покрытий.						
Режим	С, ат.%	О, ат.%	Аr, ат.%			
Униполярный HiPIMS	93.50	6.06	0.44			
Биполярный HiPIMS	95.56	3.51	0.93			
Униполярный комбинированный	96.31	3.06	0.63			
Биполярный комбинированный	95.72	3.68	0.60			

На Рис. 3 представлены значения твердости и содержания sp³/(sp²⁺sp³) в покрытиях, полученных в исследуемых режимах. Видно, что твердость покрытий, полученных в биполярных режимах выше, чем в униполярных, а твердость покрытий, нанесенных в комбинированных режимах выше, чем в режимах HiPIMS. Первая тенденция обусловлена тем, что применение положительных импульсов в биполярных режимах приводит к увеличению энергии ионов, бомбардирующих подложку. Вторая тенденция обусловлена более высокой ионизацией атомов углерода в комбинированном разряде, по сравнению с HiPIMS.

В целом содержание sp³/(sp²+sp³) в покрытиях коррелирует с твердостью покрытий за исключением униполярного HiPIMS режима, где невысокой твердости (9 ГПа) покрытия соответствует высокое содержание sp³-фазы.

На Рис. 4 показаны снимки поверхности покрытий. Визуально, покрытия, полученные в комбинированном режиме, мало отличаются от покрытий, нанесенных магнетронным распылением. Макрочастицы графита отсутствуют на поверхности всех покрытий. Это объясняется коротким временем жизни и небольшой энергией дугового разряда.

Рис. 3. Твердость и содержание sp³/(sp²+sp³) в углеродных покрытиях.

Рис. 4. СЭМ снимки поверхности углеродных покрытий, полученных в режимах: (a) униполярный HiPIMS, (б) биполярный HiPIMS, (в) униполярный комбинированный, (г) биполярный комбинированный.

 10^{0} Скорость износа, мм²·H·l_M-1 10^{-1} 10^{-2} $9.7 \cdot 10^{-4}$ 10^{-3} 10-4 10-5 10⁻⁶-3.7.10 $1.3.10^{-7}$ 10^{-7} $1.0.10^{-8}$ 10^{-8} \bigcirc 10⁻⁹-Sumosoman . 5MOINSPIE ALC AL - Comme WILLOW OWNER HIPINS High -YEARDOLAND

Рис. 5. Снимки треков износа углеродных покрытий, полученных в режимах: (а) униполярный HiPIMS, (б) биполярный HiPIMS), (в) униполярный

комбинированный, (г) биполярный комбинированный.

Рис. 6. Зависимость скорости износа углеродных покрытий от режима осаждения.

На Рис. 5 показаны снимки треков износа углеродных покрытий после проведения трибологических испытаний. Видно, что покрытие, нанесенное в режиме униполярного HiPIMS, имеет плохую адгезию к подложке. Это привело к отслаиванию покрытия в области трека в процессе истирания и высокой скорости износа (Рис. 6). Для остальных покрытий характерна низкая скорость износа. Наименьшее значение скорости износа имеет покрытие, полученное в биполярном комбинированном режиме ($1 \times 10^{-8} \text{ мм}^2/\text{H·m}$), что обусловлено наибольшим содержанием sp³-углерода в покрытии.

4. Заключение

В работе получены и исследованы углеродные покрытия в биполярном импульсном комбинированном режиме дугового и магнетронного распыления. Особенностью биполярного комбинированного режима является использование положительного импульса, предназначенного для управления энергией ионов углерода. Покрытия, полученные в биполярном режиме без потенциала смещения, обладают высокой твердостью (22 ГПа), высоким содержанием sp^3 -фазы (около 65%) и низкой скоростью износа (1×10⁻⁸ мм²/H·м). Твердость и износостойкость покрытий в биполярном комбинированном режиме, оказалась выше, чем у покрытий в униполярном комбинированном режиме, а также в униполярном и биполярном HiPIMS.

Благодарности

Работа выполнена в рамках Госзадания ИСЭ СО РАН (тема № FWRM-2021-0006).

5. Список литературы

- J. Robertson, Deposition mechanisms for promoting sp³ bonding in diamond-like carbon, *Diam. Relat. Mater.*, vol. 2(5–7), 984, 1993; doi: 10.1016/0925-9635(93)90262-Z
- [2] J. Lin, W.D. Sproul, R. Wei, R. Chistyakov, Diamond like carbon films deposited by HiPIMS using oscillatory voltage pulses, *Surf. Coat. Technol.*, vol. 258, 1212, 2014; doi: 10.1016/j.surfcoat.2014.06.061
- [3] M. Lattemann, A. Moafi, M.M.M. Bilek, D.G. McCulloch, D.R. McKenzie, Energetic deposition of carbon clusters with preferred orientation using a new mixed mode cathodic arc Sputtering process, *Carbon*, vol. **48(3)**, 918, 2010; doi: 10.1016/j.carbon.2009.10.029
- [4] R. Ganesan, D.G. McCulloch, N.A. Marks, M.D. Tucker, J.G. Partridge, M.M.M. Bilek, D.R. McKenzie, Synthesis of highly tetrahedral amorphous carbon by mixed-mode HiPIMS sputtering, *J. Phys. D: Appl. Phys.*, vol. 48(44), 442001, 2015; doi: 10.1088/0022-3727/48/44/442001
- [5] V.O. Oskirko, A.N. Zakharov, M.I. Azhgikhin, A.S. Grenadyorov, V.A. Semenov, A.A. Solovyev, Bipolar mixed-mode high-power impulse magnetron sputtering of carbon, *Vacuum*, vol. 215, 112395, 2023; doi: 10.1016/j.vacuum.2023.112395