doi: 10.56761/EFRE2024.S4-O-029801

Распределение тока по поверхности полого катода в процессе коммутации в псевдоискровом разряднике

Ю.Д. Королев^{*}, Н.В. Ландль, О.Б. Франц, В.Г. Гейман, А.В. Болотов

Институт сильноточной электроники СО РАН, Томск, Россия *korolev@lnp.hcei.tsc.ru

Аннотация. Исследуется процесс нарастания тока в псевдоискровом разряднике при анодных напряжениях до 20 кВ и коммутируемых токах на уровне 1 кА. Запуск разрядника осуществлялся за счет зажигания вспомогательного тлеющего разряда и формирования плазмы в заземленной катодной полости. Для выявления распределения коммутируемого тока по поверхности катодной полости использовалась секционированная конструкция катода. Показано, что на начальной стадии коммутации имеет место плотный тлеющий разряд с полым катодом, который переходит в сверхплотный тлеющий разряд со вторичными взрывоэмиссионными процессами на катоде. Выявлены особенности коммутации при внешнем запуске разрядника и в условиях статического пробоя высоковольтного промежутка. Ключевые слова: псевдоискровой разрядник, разряд с полым катодом, тлеющий разряд.

1. Введение

Псевдоискровой разрядник представляет собой сильноточный коммутирующий прибор, в котором используется импульсный разряд низкого давления с полым катодом [1, 2]. В типичных электрических схемах включения разрядника катодная полость заземлена, и метод запуска основан на принудительной генерации плазмы в этой полости. Отличительной особенностью разрядника является возможность обеспечения наносекундной стабильности зажигания разряда в основном высоковольтном промежутке относительно момента подачи импульса запуска. Соответственно, проблеме выяснения механизма зажигания разряда в приборе посвящено большое число ранних и текущих исследований [2–4].

Другое направление работ, связанное с псевдоискровыми разрядниками, относится к изучению процессов в стадии коммутации, т.е. процессов в сильноточной стадии роста тока и спада напряжения на электродах. Результаты именно по этому направлению представлены в настоящей работе. В частности, выявлено различие в условиях протекания тока в ситуации, когда используется внешний запуск разрядника и когда происходит статический пробой высоковольтного промежутка.

2. Устройство разрядника и метод запуска, основанный на инициировании слаботочного вспомогательного тлеющего разряда

Схема эксперимента, демонстрирующая принцип запуска разрядника, и метод исследования распределения тока по поверхности катодной полости показаны на Рис.1. Высоковольтный промежуток разрядника образован анодом A и заземленными полым катодом C, которые размещены в корпусе из керамики с внутренним диаметром 86 мм. Межэлектродное расстояние между плоскими частями электродов A и C равно 3 мм. Основной промежуток сообщается с катодной полостью благодаря 8 отверстиям расположенным на окружности диаметром 26 мм. Толщина плоской части электрода C равна 3 мм. Рабочее давление водорода в разряднике в диапазоне (0.3–0.7) Торр поддерживается за счет баланса между скоростью откачки газа и скоростью напуска газа. В таких условиях без внешнего запуска основной высоковольтный промежуток выдерживает без пробоя напряжение V_0 до 20 кВ.

Как видно из Рис.1, заземленная полость основного высоковольтного промежутка сделана в виде двух секций С и С₁. При возникновении сильноточного разряда полный коммутируемый ток *i* протекает с анода на заземленный полый катод. Часть этого тока

замыкается на внутреннюю поверхность отверстий в плоской части электрода C, которые играют роль полых катодов малого размера. Этот ток i_1 регистрируется путем снятия сигнала с шунта $R_{sh1} = 0.2$ Ом. Ток i_2 на оставшуюся часть боковой поверхности (на секцию C_1) регистрируется с шунта $R_{sh2} = 0.2$ Ом. В некоторых экспериментах с целью ограничения тока на секцию C_1 применятся сопротивление $R_T = (5-1000)$ Ом, как показано на схеме.

Рис. 1. Схема разрядника и метод внешнего запуска, основанный на инициировании плазмы вспомогательного тлеющего разряда в катодной полости *C*. Накопительная емкость *C*₀ = 5.5 нФ, сопротивление нагрузки в цепи анода *R*₀ = 15 Ом. Напряжение питания вспомогательного тлеющего разряда *V*₁ = (0.4–3) кВ, балластное сопротивление *R*₁ = 55 кОм. Диаметр полостей *C*₁ и *A*₁ равен 36 мм при глубине полостей 46 мм.

Запуск разрядника производится следующим образом. В исходном состоянии устанавливается анодное напряжение ниже напряжения статического пробоя. Затем с помощью источника питания V_1 инициируется вспомогательный тлеющий разряд между электродами A_1 и C_1 с током на уровне 20 мА. Обычно напряжение источника питания имеет отрицательную полярность, т.е. электрод C_1 служит анодом вспомогательного разряда, и в полости анода формируется плазма положительного столба. Из этой плазмы в основной промежуток через 8 отверстий извлекаются электроны, в результате чего инициируется сильноточный разряд в соответствии с механизмом, рассмотренном в [2]. Тогда осциллограммы токов с шунтов позволяют судить о распределении полного коммутируемого тока по поверхности заземленной катодной полости.

Отметим, что при использовании положительной полярности V_1 в полости C_1 возникает плазма отрицательного свечения, из которой в основной промежуток могут поступать ионы, ускоренные в катодном слое вспомогательного тлеющего разряда. В таких условиях наличие разряда практически не снижает напряжение статического пробоя, т.е. зажигание вспомогательного тлеющего разряда при положительной полярности V_1 приводит к инициированию пробоя только в ограниченном диапазоне условий.

3. Особенности коммутации при запуске разрядника за счет инициирования вспомогательного тлеющего разряда напряжением отрицательной полярности

Типичные осциллограммы, иллюстрирующие развитие процесса коммутации основного промежутка представлены на Рис. 2. Рост тока *i* через разрядник и спад напряжения V_A на аноде начинается в момент времени $t_0 = 0$. Через время $t_m = 40$ ns ток достигает максимального значения $i_m = 1020$ А. Этот ток ограничен величиной сопротивления нагрузки

 $R_0 = 15$ Ом и индуктивностью электрической цепи. Время коммутации, измеренное по росту тока от уровня 0.1 i_m до уровня 0.9 i_m , составляет $t_s = 18$ нс.

Рис. 2. Осциллограммы напряжения на аноде V_A и тока i(t) (а) совместно с осциллограммами тока $i_1(t)$ на секцию C и тока $i_2(t)$ на секцию C_1 . (б). Сигнал полного коммутируемого тока i(t) снимается с шунта R_{sh1} в условиях, когда секции C_1 и C соединены между собой. $R_T = 0$.

На начальной стадии через время $t_1 = 10$ нс ток достигает примерно 60 A и анодное напряжение снижается до $V_A(t_1) = 18$ кВ. Это напряжение фактически представляет собой напряжение горения разряда V_d . Вначале ток протекает только на секцию C. В соответствии с ранее развитыми представлениями [5–8] данная стадия соответствует плотному тлеющему разряду с полым катодом. Восемь отверстий в плоской части электрода C играют роль полых катодов. Внутри этих отверстий поддерживается плазма отрицательного свечения, и в межэлектродном промежутке между электродами A и C имеется плазма положительного столба. Между этими областями плазмы может существовать так называемый двойной электрический слой [5, 8]. Катодное падение потенциала V_c вблизи внутренней поверхности отверстий примерно равно напряжению горения разряда.

Оценки для параметров катодного слоя и параметров плазмы отрицательного свечения можно сделать на основе модели тлеющего разряда с полым катодом [5, 7]. Будем считать, что в момент $t_1 = 10$ нс ток разряда замыкается на катоде на внутреннюю поверхность восьми отверстий в плоской части электрода *C*. Тогда ток на одно отверстие равен 7.5 A, и с учетом геометрии отверстий плотность тока на поверхности катода j = 26.5 A/cm². Напряжение горения разряда, т.е. напряжение на катодном слое $V_d \approx V_c = 18$ кВ.

Ток на катод обеспечивается главным образом ионами, поступающими в слой прикатодного падения потенциала из плазмы отрицательного свечения. Кроме того, имеется ток эмиссии электронов с катода, который определяется через так называемый обобщенный коэффициент вторичной эмиссии $\Gamma \approx 0.3$ [5, 7]. Соответственно, для плотности тока на поверхности отверстия имеем соотношение $j = j_i (1 + \Gamma)$, где j_i – плотность тока ионов.

Для разряда низкого давления ток ионов через катодный слой определяется законом Чайлда-Ленгмюра. Зная плотность тока ионов и величину падения напряжения на катодном слое получим для рассматриваемого примера длину прикатодного падения потенциала $l_c = 0.7$ мм. Видим, что при диаметре отверстия 3 мм катодный слой действительно помещается внутри отверстия, и на оси отверстия должна существовать плазма отрицательного свечения. Ионизация в этой плазме поддерживается электронами, ускоренными в катодном слое благодаря эффекту полого катода.

Для плотного тлеющего разряда важным параметром является напряженность электрического поля на поверхности катода E_c . Если эта напряженность превышает критическое значение $E_c = E_{cr} \approx 10^6$ В/см, то имеет место переход в режим так называемого сверхплотного тлеющего разряда. Такой переход происходит за счет развития взрывоэмиссионной неустойчивости в катодном слое [5] и образования локальных участков плазмы катодных пятен с повышенной эмиссией электронов. Для обсуждаемого примера имеем напряженность поля на катоде $E_c = 2V_c/l_c = 5 \cdot 10^5$ В/см, т.е. условие развития взрывоэмиссионной неустойчивости еще не выполняется.

Наконец, мы можем оценить концентрацию плазмы отрицательного свечения в момент времени t_1 [8]. Ионы из области плазмы входят в катодный слой, имея максимальную скорость $v_i = (kT_e/M)^{1/2}$, где $kT_e \approx 5$ эВ – температура электронов в плазме, M – масса иона. Тогда концентрация ионов в плазме $n_i \approx n_e$ оценивается из соотношения $j_i = en_i v_i/2$, и для рассматриваемых условий $n_e = 1.6 \cdot 10^{14}$ см⁻³.

После момента $t_1 = 10$ нс ток i_1 продолжает возрастать, т.е. концентрация плазмы в отверстиях продолжает расти. Кроме того, возникает ток i_2 на боковую поверхность полости C_1 . Это значит, что в полости C_1 также начинает генерироваться плазма, и полный коммутируемый ток протекает как сумма $i = i_1 + i_2$. Рассмотрим характерный момент времени $t_2 = 20$ нс. К этому моменту напряжение на промежутке снизилось до $V_d = 12$ кВ, и как следует из осциллограмм на Рис.26, ток на боковую поверхность восьми отверстий равен $i_1 = 320$ А. Тогда плотность тока на одно отверстие j = 140 А/см². Соответственно, можем оценить длину катодного слоя, которая уменьшилась до $l_c = 0.2$ мм.

С учетом длины катодного слоя и падения напряжения на слое получаем, что напряженность поля на катоде достигает значения близкого к критическому ($E_c = 1.2 \cdot 10^6$ В/см). Это значит, что возникают предпосылки для развития взрывоэмиссионной неустойчивости и для перехода от плотного тлеющего разряда к сверхплотному тлеющему разряду с повышенной эмиссионной способностью катода.

Если теперь оценить концентрацию плазмы в отверстии, то получим, что $n_e = 10^{15}$ см⁻³ и степень ионизации газа в отверстии составляет около 5 %. Тогда дальнейший рост концентрации плазмы в отверстии замедляется, и мы видим, что рост тока i_1 после момента t_2 также замедляется. Как следует из осциллограмм полный ток *i* возрастает за счет роста тока i_2 , т.е. благодаря генерации плазмы в полости C_1 .

Следующий характерный момент времени на осциллограммах это $t_3 = 30$ нс, когда i = 800 А и напряжение горения разряда $V_d = 5$ кВ. Мы предполагаем, что именно в окрестности этого момента времени на внутренней поверхности отверстий начинают образовываться катодные пятна, т.е. происходит переход от стадии плотного тлеющего разряда к стадии сверхплотного тлеющего разряда со вторичными взрывоэмиссионными процессами на катоде. Благодаря катодным пятнам обеспечивается дополнительная эмиссия с катода, и начиная с момента t_3 имеет место повышение тока i_1 . С другой стороны, ток на полость C_1 уменьшается, поскольку полный коммутируемый ток частично перехватывается на катодные пятна, образующиеся на внутренней поверхности отверстий в плоской части электрода C.

В момент $t_4 = 40$ нс коммутируемый ток *i* достигает максимального значения $i_m = 1020$ А. Этот ток замыкается как на секцию *C*, так и на секцию *C*₁. Отчетливо выраженное дуговое катодное пятно на кромке одного из отверстий при таком токе не образуется. В противном случае мы имели бы ситуацию, когда ток на полость *C*₁ практически бы полностью прекратился бы. Иными словами, при полном коммутируемом токе на уровне 1000 А все стадии роста тока обеспечиваются за счет плотного и сверхплотного тлеющего разряда с полым катодом.

Если полный коммутируемый ток увеличивается за счет снижения сопротивления нагрузки R_0 , то на завершающей стадии коммутации на кромке одного из отверстий инициируется отчетливо выраженное дуговое катодное пятно [5]. В таком случае имеет место обрыв тока i_2 , и весь ток начинает протекать на секцию C.

4. Особенности коммутации при статическом пробое

Выше мы рассмотрели случай внешнего инициирования основного разряда между электродами A и C, когда в заземленной катодной полости и в области отверстий принудительно создается плазма положительного столба. Такая ситуация благоприятствует тому, что основной разряд с анода A развивается по длинному пути на внутренние поверхности отверстий и на секцию C_1 . При статическом пробое имеет место другая ситуация. Типичные осциллограммы, соответствующие статическому пробою, т.е. в отсутствие внешнего запуска показаны на Рис. 3.

Рис. 3. Осциллограммы напряжения на аноде V_A , тока i(t) и напряжения V_{RT} на сопротивлении R_T для условий, когда анодное напряжение равно статическому пробивному напряжению высоковольтного промежутка. p = 0.75 Торр, $R_T = (0-1000)$ Ом.

Данные осциллограммы получены следующим образом. Устанавливалось давление газа p = 0.7 Торр и анодное напряжение 20 кВ. Далее увеличиваем давление примерно до 0.75 Торр, что приводит к пробою основного промежутка без внешнего инициирования. В отличие от предыдущих условий видно, что максимум тока $i_m = 1070$ A достигается через время $t_m = 22$ нс. Время коммутации по току от уровня 0.1 i_m до 0.9 i_m оказалось меньше, чем для условий внешнего инициирования разряда, $t_s = 10$ нс.

Как показывают осциллограммы, в процессе развития статического пробоя ток на полость C_1 практически не протекает, и полный ток разряда равен току i_1 , который регистрируется с шунта R_{sh1} . Даже если в схеме имеется сопротивление $R_T = 1000$ Ом, то падение напряжения на этом сопротивлении не регистрируется. Это означает, что рост тока обусловлен процессами генерации плазмы в основном зазоре и в области отверстий.

Различие можно интерпретировать в рамках представлений об особенностях статического пробоя по сравнению с пробоем при внешнем инициировании. При внешнем инициировании мы создаем плазму в области отверстий и в полости C_1 за счет отдельной электрической цепи, от которой осуществляется питание разряда запуска. Данная плазма служит источником электронов в основной зазор.

В общем случае разряд при низком давлении газа не может инициироваться одиночными электронами, поскольку длина свободного пробега электронов для ионизации соизмерима либо меньше длины зазора [2]. При статическом пробое также должен быть

механизм, обеспечивающий в предпробойной стадии ток электронов на анод. Предположительно инициирующий поток электронов возникает за счет эмиссии с кромок отверстий. Кроме того, электроны могут инициироваться с катода за счет фотоэмиссии при засветке поверхности от паразитных разрядов по поверхности изолятора, возникающих при высоком анодном напряжении. Предпробойный ток переходит в ток пробоя, причем это происходит без участия плазмы, создаваемой при внешнем запуске. Здесь уже на ранней стадии возникает дуговой разряд с отчетливо выраженным катодным пятном. В целом такой сценарий развития разряда обеспечивает меньшее время коммутации и малое сопротивление разряда в процессе коммутации.

5. Заключение

Показано, что процесс коммутации в разряднике при токах на уровне 1 кА существенно различен для случая внешнего инициирования и для условий статического пробоя. При внешнем инициировании нарастание тока обусловлено развитием плотного тлеющего разряда с полым катодом и сверхплотного тлеющего разряда со взрывоэмиссионными процессами на катоде. При статическом пробое на ранней стадии образуется отчетливо выраженное дуговое катодное пятно, на которое замыкается весь ток разряда.

Благодарности

Исследование выполнено при поддержке Министерства науки и высшего образования Российской Федерации в рамках проекта FWRM-2021-0007.

6. Литература

- [1] K. Frank and J. Christiansen, The fundamentals of the pseudospark and its applications, *IEEE Trans. Plasma Sci.*, **17**(5), 748, 1989, doi: 10.1109/27.41195
- [2] Y.D. Korolev and N.N. Koval, Low-pressure discharges with hollow cathode and hollow anode and their applications, *J. Phys. D: Appl. Phys.*, **51**, 323001, 2018, doi: 10.1088/1361-6463/aacf10
- [3] U.N. Pal, P.R. Lamba, Varun, V.L. Meena, and K. Frank, A multi-gap multiaperture pseudospark switch and its performance analysis for high-voltage applications, *IEEE Trans. Electron Devices*, **67** (12), 5600, 2020, doi: 10.1109/TED.2020.3029022
- [4] W.D. Ding, S.K. Shen, J.Q. Yan, Y.A. Wang, and B. Wang, Discharge characteristics of a pseudospark switch in series with a saturable inductor, *IEEE Trans. Plasma Sci.*, 47(10), 4572, 2019, doi: 10.1109/TPS.2019.2919254
- Y.D. Korolev, O.B. Frants, N.V. Landl, I.A. Shemyakin, and V.G. Geyman, High-current stages in a low-pressure glow discharge with hollow cathode, *IEEE Trans. Plasma Sci.*, 41 (8), 2087, 2013, doi: 10.1109/TPS.2013.2266675
- [6] Y.D. Korolev, N.V. Landl, V.G. Geyman, O.B. Frants, and G.A. Argunov, Hollow-cathode glow discharge in a trigger unit of pseudospark switch, *Phys. Plasmas*, 25, 113510, 2018, doi: 10.1063/1.5044711
- [7] Y.D. Korolev, N.V. Landl, O.B. Frants, G.A. Argunov, V.G. Geyman, and A.V. Bolotov, Low-pressure discharge in a trigger unit of pseudospark switch, *Phys. Plasmas*, 27, 073510, 2020, doi: 10.1063/5.0010733
- [8] Y.D. Korolev, N.V. Landl, O.B. Frants, G.A. Argunov, V.G. Geyman, and A.V. Bolotov, Operating modes in a low-pressure glow discharge with hollow cathode, *Plasma Sources Sci. Technol.*, 31(7), 074002, 2022, doi: 10.1088/1361-6595/ac7902